

Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings A U.S. DOE Energy Innovation Hub

Task 2.2.11 – CMU Report 05: Analysis of EnergyPlus-Based Building Envelope Modeling

Department of Energy Award # EE0004261

Omer T. Karaguzel, PhD Candidate Khee Poh Lam, PhD, RIBA, Professor Of Architecture

Center for Building Performance and Diagnostics

Carnegie Mellon University February 2012

TABLES OF CONTENTS

Introduction/Executive Summary	3
1. Simulation of "Opaque Envelope" with EnergyPlus v6.0	3
1.1 Type 1 – "Construction (Layer-by-Layer Definition)"	3
1.2 Type 2 – "Construction (C-Factor Underground Wall)"	4
1.3 Type 3 – "Construction (F-factor Ground Floor)"	
1.4 Type 4 – "Construction (Internal Source)"	
1.5 Creating opaque envelope constructions and assignment to building surfaces	6
2. Simulation of Windows with EnergyPlus v6.0	8
2.1 Type 1 – "Window Material: Simple Glazing System"	
2.2 Type 2 – "Window Material: Glazing – Spectral Average"	8
2.3 Type 3 – "Window Material: Glazing – Spectral"	10
2.4 Creating window assemblies and assignment to fenestration surfaces	12

LIST OF FIGURES

Figure 1 EnergyPlus input schema for material definition	3
Figure 2 EnergyPlus input screen for standard material definition	3
Figure 3 EnergyPlus input schema for material definition – alternatives	4
Figure 4 EnergyPlus input schema for C-factor underground wall types	4
Figure 5 EnergyPlus input screen for C-factor underground walls	4
Figure 6 EnergyPlus input schema for F-factor slab-on-grade/underground floors	5
Figure 7 EnergyPlus input screen for F-factor slab-on-grade/underground floors	
Figure 8 EnergyPlus input schema for constructions with internal source	
Figure 9 EnergyPlus input screen for constructions with internal source	
Figure 10 EnergyPlus input screen for opaque envelope construction definitions	6
Figure 11 EnergyPlus input screen for construction assignment to building surfaces	6
Figure 12 Overall EnergyPlus input schema for complete opaque envelope modeling	7
Figure 13 EnergyPlus input schema for simplified glazing	8
Figure 14 EnergyPlus input screen for simplified glazing	8
Figure 15 EnergyPlus input schema for spectral average	8
Figure 16 EnergyPlus input screen for spectral average	9
Figure 17 EnergyPlus input schema for Mid-pane Gas definition	9
Figure 18 EnergyPlus input screen for Mid-pane Gas	9
Figure 19 EnergyPlus input schema for Window Frame and Divider Definitions	
Figure 20 EnergyPlus input screen for Frames and Dividers	10
Figure 21 EnergyPlus input schema for Spectral Data Entry	10
Figure 22 EnergyPlus input screen for spectral data	11
Figure 23 Spectral data input analysis	
Figure 24 EnergyPlus input screen for window construction definition	12
Figure 25 EnergyPlus input screen for window assignment to fenestration surfaces	12
Figure 26 Overall EnergyPlus input schema for complete window modeling	13

Introduction/Executive Summary

A detailed analysis is conducted on the process of developing building envelope components within EnergyPlus environment with the aim of identifying required input data and the design correlates for opaque and transparent assemblies. Alternative envelope model definition methods are discussed and explained through schemas developed to reveal relationships (hierarchies) between EnergyPlus classes and objects pertaining to a specific definition method. Partial schemas are later appended to provide an overall and comprehensive EnergyPlus input schema that can be used as a guide during model development process for envelope components. Analyzed model definitions methods for opaque assemblies are layer-by-layer definition, C-factor underground wall, F-factor ground floor, and internal source methods. Model definition methods analyzed for transparent assemblies can be listed as simple glazing system, spectral average definition, and spectral methods.

1. Simulation of "Opaque Envelope" with EnergyPlus v6.0 – Model Definition Methods

1.1 Type 1 – "Construction (Layer-by-Layer Definition)"

Definition of the entire opaque envelope assembly (walls, roofs, floors) is needed from individual materials. Each layer of the construction assembly should be chosen materials list in order from outside to inside. Maximum number of material layers is 10 for a single assembly. Outside can be another zone or a semi-condition space. Layer-by-layer definition method requires EnergyPlus objects for materials in the form of full definition, no mass, infrared transparent, air gap, or roof vegetation.

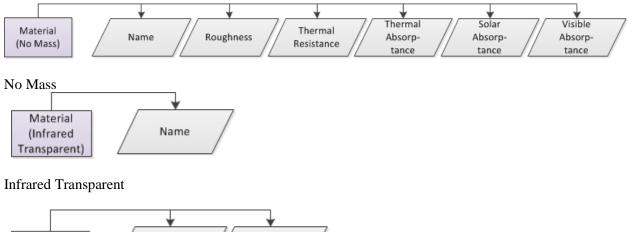
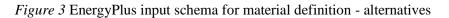

Field	Units	Obj1	Obj2	ОБј3	Obj4	Obj5	Obj6
Name		1_1_73	1_2_28	1_3_9	3_1_180	3_3_6	5_1_10015
Roughness		Rough	Rough	Rough	Rough	Rough	MediumRoug
Thickness	m	0.0127	0.0254	0.1016	0.2032	0.1016	0.0127
Conductivity	W/m-K	0.3	0.028	1.13	1.35	0.62	0.057
Density	kg/m3	1600	35	2000	1800	1700	288
Specific Heat	J/kg-K	2000	1590	1000	1000	800	1339
Thermal Absorptance		0.9	0.9	0.9	0.9	0.9	0.9
Solar Absorptance		0.7	0.6	0.6	0.6	0.7	0.7
Visible Absorptance		0.7	0.6	0.6	0.6	0.7	0.2

Figure 1 EnergyPlus input schema for material definition

Figure 2 EnergyPlus input screen for standard material definition

Each different material should have a unique name with all the necessary physical, thermo-physical, and optical properties listed.

Other types of individual building material definitions are no mass : to represent light-weight materials ignoring thermal mass effect, infrared material: to represent low resistance materials which have high absorptance in short and long-wave radiation, air gap: to represent air spaces in opaque construction (e.g., air-walls or virtual partitions), roof vegetation: to represent vegetated roofs including soil and plant layers. In addition to these, standard material properties can be coupled with special material property entries for advanced modeling of moisture transfer, variable thermal conductivity, as well as phase change properties.



Air Gap

Roof Vegetation

Material infrared links with an existing material layer (with standard definition) but applies modified calculation procedures.

1.2 Type 2 – "Construction (C-Factor Underground Wall)"

This is an alternative method for defining underground wall constructions only. Individual material entries are not needed. However, user should provide C-factor and the height of each different underground wall construction existing in the building model. Building energy codes and standards (ASHRAE 90.1, California Title 24) require certain maximum limits for C-factor of underground assemblies.

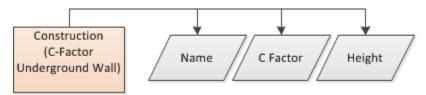


Figure 4 EnergyPlus input schema for C-factor underground wall types

Field	Units	ОБј1
Name		Under_Ground_Wall_1
C-Factor	W/m2-K	0.623
Height	m	2.76

Figure 5 EnergyPlus input screen for C-factor underground walls

A new EnergyPlus object should be created for different underground wall assembly (differentiated by both their C-factors and their height).

1.3 Type 3 – "Construction (F-factor Ground Floor)"

This is an alternative and simplified approach to model ground floor constructions only without recourse to layer-by-layer definition methods. This method is suitable when only the floor area, exposed perimeter and the maximum F-factor of the related construction is available.

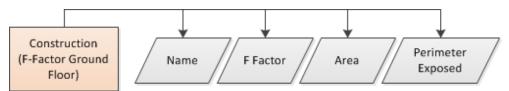


Figure 6 EnergyPlus input schema for F-factor slab-on-grade/underground floors

Field	Units	ОБј1
Name		Ground_Floor_1
F-Factor	W/m-K	1.264
Area	m2	35
PerimeterExposed	m	87 🗸

Figure 7 EnergyPlus input screen for F-factor slab-on-grade/underground floors

1.4 Type 4 – "Construction (Internal Source)"

This is a special construction assembly definition approach to model radiant systems which have constructions including resistance wires/hydronic tubing. Heat is either added or removed from the building element. In the case of building-integrated photovoltaic elements energy is removed in the form electricity will form a heat sink. This method also requires definition of individual material layers. The user should define the order of material layers, location of the heat source or sink, location of internal temperature calculation, dimension of CTF (conduction transfer functions) calculation, and tube spacing (if any).

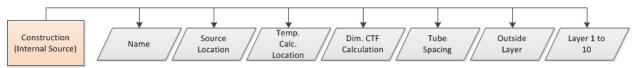


Figure 8 EnergyPlus input schema for constructions with internal source

Field	Units	ОБј1	Obj2	ОЫЗ
Name		ZonesOtherSlab_Interior	ZonesOtherSlab_Exterior	Zone146900_Slab
Source Present After Layer Number		3	4	2
Temperature Calculation Requested After Layer Numbe		3	4	2
Dimensions for the CTF Calculation		1	1	1
Tube Spacing	m	0.1524	0.1524	0.1524
Outside Layer		3_4_27	3_4_27	XPS_Insulation_4INCH
Layer 2		19_RVAL_2	21_2_10004	11_1_182
Layer 3		3_2_36	21_RVAL_3	11_2_182
Layer 4		3_1_34	21_4_36	
Layer 5			21_4_34	
Layer 6				
Layer 7				
Layer 8				
Layer 9				
Layer 10				

Figure 9 EnergyPlus input screen for constructions with internal source

Each different floor construction (with internal heat source/sink) should be defined separately.

1.5 Creating opaque envelope constructions assemblies and assignment to building surfaces

For standard construction assemblies (except for C-factor, F-factor types), individual material layers should be grouped together to form the final assembly. Opaque envelope modeling can be finalized by assignment of developed constructions to specific building surfaces (geometrically defined).

Field	Units	ОБј26	Оbj27	ОБј28	ОБј29	ОБј30
Name		25] 26	1001	1002	Shaded_Glazing
Outside Layer		25_1_71	Gypsum_Board	IGDB_6254_Flipped	2	IGDB_6254_Flipped
Layer 2		25_2_8	insulation_layer_1	Mid_Pane_Argon		Mid_Pane_Argon
Layer 3		insulation_layer_2	25_3_9	IGDB_6254_Norma		IGDB_6254_Norma
Layer 4		25_3_9	insulation_layer_2			Roller_Shade
Layer 5		insulation_layer_1	25_2_8			
Layer 6		Gypsum_Board	25_1_71			
Layer 7						
Layer 8						
Layer 9						
Layer 10						

Figure 10 EnergyPlus input screen for opaque envelope construction definitions

Field	Units	061	0.65	060	014	065	056
Name		ELLINGUE AND	C_14000 1.0.0	1 151115 0 0 100	W_146809.2.0.0	W_140009_3_0_0	W_14089
Surface Type		Floor	Ceiling	Fices	Wal	Wal	Wal
Construction Name		14(80)_Rep	ZoreOtherDiab_Int_	ZonerOtherSlab_Ini	5	5	5
Zoro Nane		146800	140089	151915	146385	140899	144099
Cutride Boundary Condition		Outdoore	Surface	Surface	Ground	Ground	Gound
Dutiide Binarday Condition Object			F_151915_0_0_10	C_140005_1_0_0			
SarEprisa		SurExposed	Notun	NoSun	Nelson	Notion	Neturi
WeidEconve		Wnd.goved	Notwind	Nowind	Newled	Skowind	Nowind
View Factor to Ground		1	0	8	05	0.5	05
Number of Versies		5	6	6	4	4	4
Vetex 1 X coordinate		5 (#6460)(01:00	1.4705061806	5.06460881100	7.1704162301	6.0992743630	0.2557414
Vetex 7 Y coordnate		0.6251759824	-4.800450076	3.6251758624	-2.6680160832	1.3287398130	4.237030
Vetes 12 coordinate		2.6675454016	0	0	-2.6675454035	2.6675454035	2467545
Vertex 21/ coordinate	85	1.4705081006	5.0541008100	1.4785067806	6.0992743630	0.2557414829	1.4795061
Vetex 217 coordinate		-4.000450076	-0.6251750624	4.800450076	1.3257298138	0.2370301023	4 800450
Vertex 22 coordinate		2.6675454035	0	8	2.0075454005	2.5675454005	2.817545
Vertex 3% cooldnate		0.2957414839	5.7130639884	0.2557414879	6.0992743638	0.2557414809	1.4795061
Vetex 31 cosidnate		-0.2370309623	-3 (2593119057	-0.2370301029	1.3257298138	-0.2370301023	-4.800450
Vertex 32-coordinate		2.6675454035	0	8	0	0	0
Veter 4% coordnate		6.09952743630	7.1704162381	6.0992743630	7.1704162301	6.0992743630	0.2557414
Vertex 4 V coordinate		1.3207390130	2 6680160832	1,3287399130	2.0100103032	1.3207298130	-0.237030
Vertex # Z coordinate	10	24675454035	0	0	0	0	0
Veter 5% coordinate		7.1704142381	6.0932743638	2.1704162303			
Vertex 5 Y coordinate		2:06881160832	1.3287290130	-2.64081160832			
Vertex 5.2 coordinate		2.6675454035	0	0			
Vetes 5% coordrate		5.7120859084	0.2557414839	5.7130655084			
Vertes 6 Y coordinate		3.05932119057	0.2370301023	-3.0593119067			
Vertex E.Z.condicate		2.6675454075	0	0			
Vertex 7% considerate	-						

Figure 11 EnergyPlus input screen for construction assignment to building surfaces

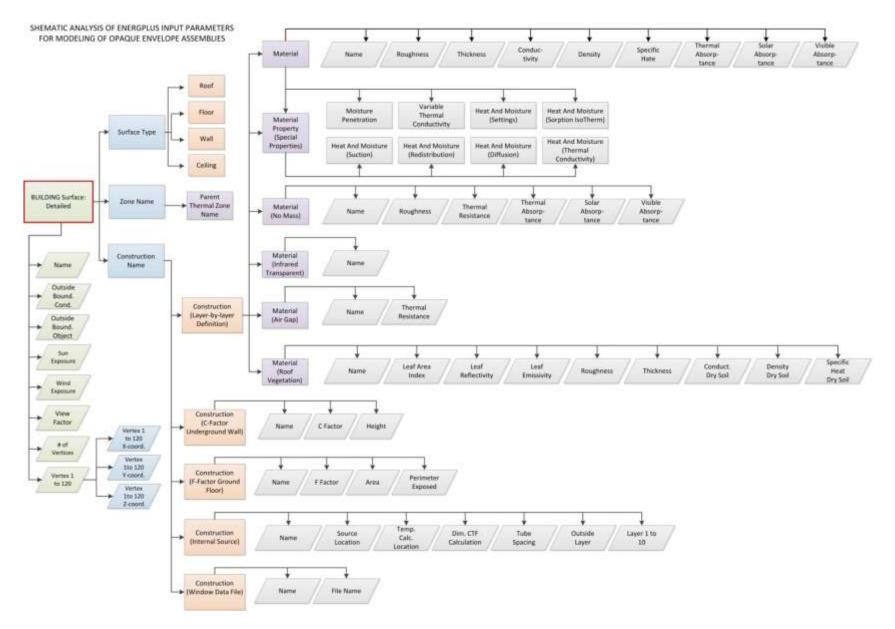


Figure 12 Overall EnergyPlus input schema for complete opaque envelope modeling

2. Simulation of Windows with EnergyPlus v6.0 - Model Definition Methods

2.1 Type 1 – "Window Material: Simple Glazing System"

Definition of the entire glazing system instead of individual layers (glass panes, coatings, mid-pane gas). Overall performance indices are used to characterize thermal and optical behavior of the system. The model definition produces an equivalent window glazing without a layer, if overall performance indices includes frame effect then window frame objects should be excluded from the building model. Significant performance differences are reported with respect to more detailed window system definitions.

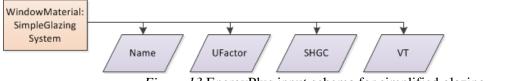


Figure 13 EnergyPlus input schema for simplified glazing

Field	Units	ОБј1
Name		NonRes Fixed Assembly Window
U-Factor	W/m2-K	3.23646
Solar Heat Gain Coefficient		0.39
Visible Transmittance		

Figure 14 EnergyPlus input screen for simplified glazing

Visible Transmission (Vt) is an optional entry

2.2 Type 2 – "Window Material: Glazing – Spectral Average"

This is a definition of the entire glazing system with individual layers. Spectral average type allows the user to define glazing pane solar transmission and reflectance data (at normal incidence) in broadband form where the input data reflects averages across all wavelengths of the solar spectrum.

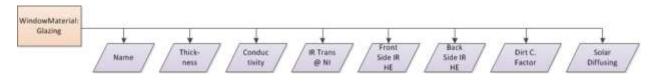


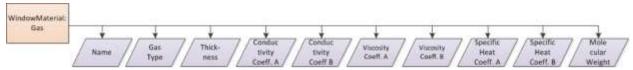
Figure 15 EnergyPlus input schema for spectral average

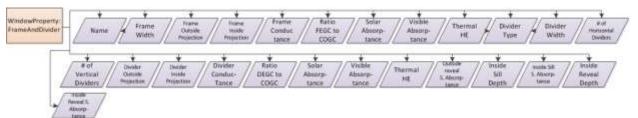
Field	Units	Obj1	ОБј2	ОБј3	Obj4
Name		2	100	IGDB_6254_Normal	IGDB_6254_Flipped
Optical Data Type		SpectralAverage	SpectralAverage	SpectralAverage	SpectralAverage
Window Glass Spectral Data Set Name					
Thickness	m	0.003	0.003	0.00566	0.00566
Solar Transmittance at Normal Incidence		0.837	0.99	0.63334	0.63334
Front Side Solar Reflectance at Normal Incidence		0.075	0.005	0.211	0.253
Back Side Solar Reflectance at Normal Incidence		0.075	0.005	0.253	0.211
Visible Transmittance at Normal Incidence		0.898	0.99	0.861318	0.861318
Front Side Visible Reflectance at Normal Incidence		0.081	0.005	0.060999	0.060999
Back Side Visible Reflectance at Normal Incidence		0.081	0.005	0.057384	0.057384
Infrared Transmittance at Normal Incidence		0	0.99	0	0
Front Side Infrared Hemispherical Emissivity		0.84	0.005	0.84	0.84
Back Side Infrared Hemispherical Emissivity		0.84	0.005	0.094531	0.094531
Conductivity	W/m-K	0.9	5	1	1
Dirt Correction Factor for Solar and Visible Transmittanc		1	1	1	1
Solar Diffusing					

Figure 16 EnergyPlus input screen for spectral average

Each different glass pane is listed with the required data inputs. Optical data type is selected as "Spectral Average".

Layer by layer window model definition also requires necessary input data about mid-pane gas layers (if any) as well as frames and dividers that completes the entire window assembly. Besides, and type of shading device should also be defined as separate EnergyPlus objects.




Figure 17 EnergyPlus input schema for Mid-pane Gas definition

Field	Units	ОБј1
Name		Mid_Pane_Argon
Gas Type		Argon
Thickness	m	0.0127
Conductivity Coefficient A	W/m-K	0.00228500
Conductivity Coefficient B	W/m-K2	0.00005149
Viscosity Coefficient A	g/m-s	0.0000033970
Viscosity Coefficient B	g/m-s-K	0.000000645
Specific Heat Coefficient A	J/kg-K	521.9290
Specific Heat Coefficient B	J/kg-K2	0.0000
Molecular Weight		39.948

Figure 18 EnergyPlus input screen for Mid-pane Gas

Each different gas material used in glazing units (IGU) is listed with the required data inputs.

Detailed frame and divider information should be provided for accurate window system modeling.

Figure 19 EnergyPlus input schema for Window Frame and Divider Definitions

Field	Units	Obj1	0Ы2	ОЫ3
Name		1	2	3
Frame Width	m	0.04	0.04	3.3020000E-02
Frame Outside Projection	m	0	0	0
Frame Inside Projection	m	0	0	0
Frame Conductance	W/m2-K	9.5	9.5	23.85254
Ratio of Frame-Edge Glass Conductance to Center-Of-6		1	1	1
Frame Solar Absorptance		0.78	0.78	0.3
Frame Visible Absorptance		0.78	0.78	0.3
Frame Thermal Hemispherical Emissivity		0.9	0.9	0.3
Divider Type		DividedLite		
Divider Width	m	0.02	0.02	1.9050000E-02
Number of Horizontal Dividers		1	1	1
Number of Vertical Dividers		1	1	1
Divider Outside Projection	m	0	0	0
Divider Inside Projection	m	0	0	0
Divider Conductance	W/m2-K	9.5	9.5	23.85254
Ratio of Divider-Edge Glass Conductance to Center-Of-		1	1	1
Divider Solar Absorptance		0.78	0.78	0.3
Divider Visible Absorptance		0.78	0.78	0.3
Divider Thermal Hemispherical Emissivity		0.9	0.9	0.3
Outside Reveal Solar Absorptance		0.78	0.78	0.3
Inside Sill Depth	m	0	0	0
Inside Sill Solar Absorptance		0.78	0.78	0.3
Inside Reveal Depth	m	0	0	0
Inside Reveal Solar Absorptance		0.78	0.78	0.3

Figure 20 EnergyPlus input screen for Frames and Dividers

Each different frame and divider type is listed with specific object names.

2.3 Type 3 – "Window Material: Glazing – Spectral"

This is the most detailed and accurate glazing type definition where solar transmission and reflectance data is defined for a range of wavelengths (between 0.5 to 2.50 microns) of the solar spectrum. These are up to 800 sets of normal incidence measured values that can be derived from International Glazing Database (IGDB v3.0).

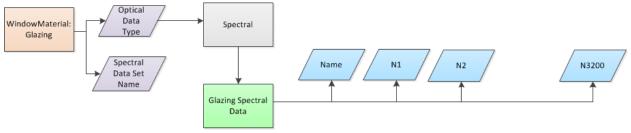


Figure 21 EnergyPlus input schema for Spectral Data Entry

Taxes in Fall-and to up to 100 on all constraints in many and values in the eventual states of the second states of the second states of the constraint of the second states of the second states of the second states of the form of the second states of the second				
Net	70.40	1064	ion2	
M2		6.57	0.37	
MORE .		0.09	0.632	
4/00		0.069	0.001	
Nation 1		0.087	0.009	
Mill		50.078	0.37%	
NAC		10.007	0.018	
NECT		0.007	0.00	
NALA		0.057	0.09	
April.		0.30	0.39	
100		0.01	0.909	
MJ7		20.062	0.079	
NATUR		0.087	0.078	
with .		0.369	0.388	
1079		0.014	10.629	
AP1		0.007	0.00	
act:		0.007	0.00	
8072		0.39	(0.39)	
with .		0.014	0.012	
10		0.003	0.000	
ALTS .		0.187	(0.1862	
WIT .		0.305	0.278	
1079		0.02	12.162	
A/19		0.067	0.003	
AAGE .		0.007	45.0802	
salit		0.4	12.4	
HC .		0.022	0.075	
NUC		0182	10.080	
Adda		0.082	0.000	
44TE		0.68	0.41	
NOR .		0.029	0.078	
MU7		0.042	0.001	
NOE		0.067	0.065	
5400		0.41	6.42	
HOR.		0.02%	0.073	
1471		0.082	0.065	
MY2		0.067	0.000	
4(5)		0.415	0.40	
ative .		0.029	0.673	
Autor .		0.181	0.062	
		The states.	1.444	

Figure 22 EnergyPlus input screen for spectral data

Each different spectral data for a specific glass pane is given with a list of 800 data points. It should be noted that with spectral data type selection, user also needs to provide model inputs for mid-pane gas, frame and dividers as mentioned in previous slides. Analysis of a glass laminate with analysis of full spectral characteristics from 0.5 to 2.50 microns. Full data obtained from specialized software (Optics 5.1) can be imported to Design Builder v3.0 as well as EnergyPlus v6.0.

Hit part With Industry Targets Million Card (2005) (2005) Particular State (2006) (2006) (2005) (2005) Particular State (2006) (2006) (2007) (2007) (2007) Particular State (2007) Particular St	ef softe sever* G Ind. Sungate 500 on clear * 0.3, 0, 0.049, 0.047 Wave-length [microns - 10*m] Solar Transmission[-] Reflectance Front Side [-] Reflectance Back Side [-]
12 (2), 20 (2)	

Optics 5.1 Spectral Analysis

Figure 23 Spectral data input analysis

2.4 Creating window assemblies and assignment to fenestration surfaces

Individual layers (created with alternative methods) should be grouped together to form the final window assembly/construction. Window modeling within EnergyPlus can be finalized by assignment of developed window constructions to specific fenestration surfaces.

Fall Nore	Units	7	05/9	9	Ohj11 10	Qbs12 1001	Obj13 Mars Novies Ext V	01/14 hterio#unitings	adan 5	Objie Objie Objie
Outride Lager Lager 2 Lager 3 Lager 4 Lager 5		7,1,19003 7,2,19004 7,3,19005 8,1,19001	5_1_10001 7_3_10006 7_3_10004 7_1_10003	9 3_1_10000	10 3_1_10008		199 Stacco BHI Concerte HW Haco Norther Wall 1/2N Oppose	Shif Wood Binch	Gast, 2003, Layer Gast, 1,W, 0, 0127 Gast, 102, Layer Gast, 1,W, 0, 0127 Gast, 103, Layer	Blanc, 2009, Leper Bag, 1, W. R. 0137 Blanc, 103, Leper Blanc, 103, Leper Blanc, 103, Leper
Laper 6 Laper 7 Laper 0 Laper 1 Laper 1										

Figure 24 EnergyPlus input screen for window construction definition

Field	Units	Obj1	ОЫ2	Obj3
Name		W_10810_5_0_0_0_0_Win	W_11020_5_0_0_0_0_Win	W_11078_5_0_0_0_0_Win
Surface Type		Window	Window	Window
Construction Name		1001	1001	1001
Building Surface Name		W_10810_5_0_0	W_11020_5_0_0	W_11078_5_0_0
Outside Boundary Condition Object				
View Factor to Ground		autocalculate	autocalculate	autocalculate
Shading Control Name				
Frame and Divider Name				
Multiplier		1	1	1
Number of Vertices		4	4	4
Vertex 1 X-coordinate	m	5.6998122124	5.6998122124	5.6998122124
Vertex 1 Y-coordinate	m	2.2211443695	2.2211443695	2.2211443695
Vertex 1 Z-coordinate	m	8.8766	4.9166	0.9566
Vertex 2 X-coordinate	m	8.6158122124	8.6158122124	8.6158122124
Vertex 2 Y-coordinate	m	2.2211443695	2.2211443695	2.2211443695
Vertex 2 Z-coordinate	m	8.8766	4.9166	0.9566
Vertex 3X-coordinate	m	8.6158122124	8.6158122124	8.6158122124
Vertex 3 Y-coordinate	m	2.2211443695	2.2211443695	2.2211443695
Vertex 3Z-coordinate	m	10.3776	6.4176	2.4576
Vertex 4 X-coordinate	m	5.6998122124	5.6998122124	5.6998122124
Vertex 4 Y-coordinate	m	2.2211443695	2.2211443695	2.2211443695
Vertex 4 Z-coordinate	m	10.3776	6.4176	2.4576

Figure 25 EnergyPlus input screen for window assignment to fenestration surfaces

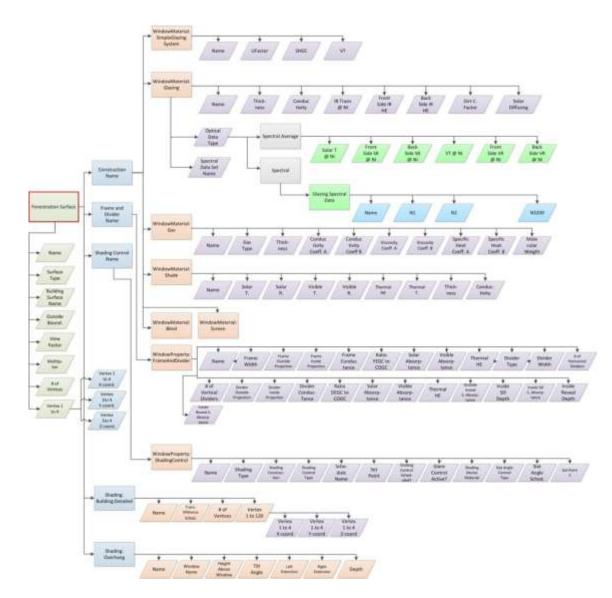


Figure 26 Overall EnergyPlus input schema for complete window modeling