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Abstract 
The minimization of life cycle costs for building materials and operational energy consumption of 
a reference commercial office building model is achieved through the optimization of envelope 
design parameters by the use of integrated energy simulation and multi-dimensional numerical 
optimization techniques. The whole-building energy simulation program EnergyPlus v6.0 is coupled 
with GenOpt v3.0 generic optimization tool to automatically compute the optimal values of thermal 
insulation thicknesses for external walls and roofs in addition to glazing unit types for vertical 
fenestration. A life cycle cost (LCC) model is implemented within the GenOpt program for the 
objective function evaluation using simulation outputs pertaining to energy consumption and 
associated utility costs. A stochastic population-based and multi-dimensional optimization technique 
of Particle Swarm Optimization (PSO) is utilized for searching the parameter space. This algorithm 
can result in a 36.2% reduction in the computational effort to converge to the global minimum 
point with a very high degree of accuracy compared to the full enumeration technique. The results 
indicate that the annual total site energy consumption of the optimized building model is reduced 
by 33.3% with respect to the initial baseline case. The optimized envelope parameters can yield 
28.7% life cycle cost reduction over a 25 years life span with a simple pay-back period of 4.2 years. 
 

Keywords 
whole-building energy simulation, 

multi-dimensional numerical  

   optimization, 

coupling framework, 

life cycle cost, 

office building envelopes 
 
Article History 
Received: 12 November 2012 

Revised: 21 January 2013 

Accepted: 4 March 2013 
 
© Tsinghua University Press and  

Springer-Verlag Berlin Heidelberg  

2013 
 
 
 
 

1 Introduction 

The building industry is the largest energy consuming 
sector in many countries and has a substantial impact on 
the environment. According to the statistics from the U.S. 
Department of Energy, buildings are currently responsible 
for approximately 41% of the total primary energy use in 
the U.S., including 19% for commercial buildings and 22% 
for residential buildings. Buildings are also responsible for 
40% of carbon dioxide emissions in the U.S. (DOE 2011). It 
is therefore critical and essential for the building industry 
to improve the energy efficiency levels and provide means 
for sustainable developments in the built environment. The 
building delivery process typically involves several complex 
actions with different characteristics and generally spans a 
long time period in the magnitude of decades (Braun 2002). 
In such a lifespan, the building envelope plays a critical role 

due to its lasting influence on the building’s energy and 
environmental performance throughout the whole life cycle. 
The selection of construction materials for the building 
envelopes not only changes the building’s primary cost at 
the construction phase but also impacts the HVAC (heating, 
ventilating, and air conditioning) systems’ energy consumption 
and costs during the building operation phase.  

In conventional building design, the specifications of 
building envelopes are determined based on either the 
requirements given in building energy efficiency standards or 
the rule-of-thumb guidelines gained through the experience 
of architects (Bichiou and Krarti 2011). Such design 
approaches which lack parametric and analytical feedbacks 
tend to ignore the influence of the optimized building 
envelope features on building’s life cycle energy performance. 
Furthermore, the simulation-based parametric analysis for 
the determination of optimum design choices for the building 
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envelopes is at best conducted using a one-factor-at-a-time 
(OAT) approach. This is a single-dimensional approach 
where the designer tries to optimize an objective function 
with respect to changing a single variable while keeping all 
the other variables as constant. Such a parametric procedure 
is then iterated for another variable. However, as indicated 
by Wetter (2001), each time a variable is changed other 
variables typically become non-optimal and also need to  
be adjusted. This time and labour intensive procedure 
becomes impractical for multi-parameter/multi-dimensional 
optimization approaches (e.g., building envelope optimization) 
where interactive effects of multiple design parameters  
on building energy performance need to be evaluated.  
The building envelope specifications implemented in the 
conventional and/or simple parametric building design 
approaches may not be the optimal choice and have 
potentials for further improvements in both accuracy and 
computational effectiveness in terms of number of simulation 
iterations for convergence on the global optimal point. 

As computational performance modelling become more 
prevalent in building research, simulation-based multi- 
dimensional building design optimization techniques have 
been increasingly studied in recent years. Al-Homoud and 
Degelman (1994) proposed one of the earliest examples of 
an optimization framework which identifies best design 
solutions satisfying minimum energy requirements while 
maintaining thermal comfort in the occupied spaces. This 
framework was exemplified by linking simple transient 
thermal simulation engine with a relatively simple optimiza-
tion technique of Nelder and Mead suitable for unconstrained 
optimization problems. Peippo et al. (1999) introduced an 
optimization scheme which involves a large number of 
different design options including building shape, thermal 
insulation, windows, daylighting, and photovoltaic systems. 
Optimal design options are identified where a cost analysis 
(for material investments and energy costs) is used to evaluate 
objective functions values. Demonstrated simulation models 
are relatively simple in terms of building geometry (shoe- 
box models) and calculations of heat transfer through the 
envelope. The optimization technique was Hooke and Jeeves 
which is deterministic in nature and requires increased 
number of simulation iterations resulting in slow con-
vergence. Similar approaches are also seen in the works  
of Bouchlaghem (2000) and Al-Homoud (1996). Some 
researchers also investigated optimization problems using 
integrated and whole-building simulation programs. For 
instance, Christensen et al. (2003) utilized DOE-2.1E pro-
gram in a life cycle cost (LCC) optimization problem for net 
zero energy buildings. In their study, the cost optimization 
technique was aimed at balancing increased first costs in 
the building enveloped with the reduced future costs (net 
present value of the costs) from operational energy con-

sumption. The iterative simulations can only be controlled 
by Visual Basic programming without resorting to well- 
structured numeric optimization methods. Mertz et al. (2007) 
also utilized a similar optimization technique introduced 
by Christensen et al. (2003) which is a hybrid and modified 
version of parallel and sequential search. They calculated life 
cycle costs for alternative energy efficiency strategies under 
the constraint of net-zero and CO2-neutral energy levels. 
Energy simulations are conducted using ESim software which 
is based on fundamental thermodynamic and psychrometric 
and heat-transfer algorithms. Verbeeck and Hens (2007) 
introduced a global multi-objective optimization methodology 
which takes into account multiple objective functions of 
energy savings, environmental impact and financial costs 
over a specified life cycle of low energy buildings. The 
proposed method relies on the use of commercial TRNSYS 
thermal engine as well as the Matlab mathematical pro-
gramming tool. This can be costly in terms of required 
expertise and investments on these commercial tool sets. 
The economic and computational cost issues can also be 
seen in the work of Tuhus-Dubrow and Kararti (2010) 
where the solution to a building design optimization requires 
similar complex mathematical tools of Matlab and Perl.  
On the other hand, Wetter and Wright (2004) introduced 
the platform of GenOpt which allows coupling the state- 
of-the-art energy simulations engines (e.g., EnergyPlus) 
with sophisticated and effective optimization techniques  
in an extensible and open-source environment where all 
incorporated tools are non-commercial and non-propriety. 
Exemplified methods only focus on the design optimization 
for reduced annual energy consumption for HVAC and 
lighting. Current version of this platform does not contain 
functions for life cycle costing. Hasan et al. (2008) achieved 
minimization of the life cycle costs of a single family 
detached house through coupled simulation (using IDA 
ICE 3.0 software) and optimization using GenOpt platform. 
However, their approach accomplishes the calculation of 
LCC within the simulation tool throughout the iterative 
simulations which limits the application of the approach to 
other tools and restricts the extension of the proposed 
optimization framework.  

This paper presents a detailed study on the influence of 
building envelope upon the building’s life cycle performance 
and optimizes the design of the building envelope con-
figurations, based on the detailed results obtained from a 
computational framework in which the whole-building 
energy simulation program of EnergyPlus v6.0 (BTP 2011) 
is coupled with GenOpt v3.0 generic optimization tool 
(LBNL 2011). Coupling tools for the solution of the selected 
optimization program are highly automated (thereby saving 
user effort), non-commercial, open-source and readily 
extensible. The optimization technique used in this study is 
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the population-based stochastic particle swarm optimization 
(PSO) which is an effective technique (for building design 
problems) evolved through several decades (Wetter and 
Wright 2004). An office building case for the U.S. context 
(DOE 2011) is purposely selected to generate results that 
have a higher level of generalizability (instead of one-of- 
a-kind solution set with limited usability). Furthermore, 
this study provides a new approach of extending the source 
code of GenOpt platform with a standard and well-known 
life cycle costing model. Hence, the updated GenOpt tool 
can be linked to any simulation engine (having a text-based 
input-output structure) and applicable to a wide-range   
of building design optimization problems as opposed to 
methods that are functional only within a specific setting. 
The proposed framework can be executed using the existing 
user interface of GenOpt requiring no additional scripting 
to automate the iterative simulations. 

With the introduced framework, this study exemplifies 
specifying the optimized values of thermal insulation 
thicknesses for external walls and roofs as well as the glazing 
unit types for vertical fenestration. Life cycle cost analysis is 
used to quantify the impact of building envelopes in both 
the building construction phase and the operational phase. 
The optimization problem in this study is formulated as a 
multi-dimensional single-objective optimization type which 
addresses the sum of life cycle costs over a 25-year time 
period for building materials and operational energy as the 
objective function value to be minimized. Validation of the 
optimization algorithm is then conducted by comparisons 
with results obtained from a brute-search method in which 
full enumeration of the parameter space is realized. The 
proposed approach can be applied to an increased number 
of design variables to generate guidance for both the new 
building design and existing building retrofit projects. 

2 Reference building model 

As mentioned, the building model implemented in this 
study is a medium-sized commercial reference office building 
provided by the U.S. Department of Energy Building 
Technologies Program. This model is selected from a 
database containing 16 hypothetical reference building 
definitions developed to represent new commercial building 
stock meeting the minimum requirements given in 
ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE 2004). 
These building definitions are given in the form of whole- 
building energy simulation models that are compatible with 
the EnergyPlus program (Deru et al. 2006).  

This reference model is a three storey commercial office 
building with a total conditioned floor area of 4982 m2.  
As shown in Fig. 1, the building shape is rectangular with   
an aspect ratio of 1.5 with long axis facing north-south  

 
Fig. 1 Overall geometry of the building: (a) 3D exterior view; (b) 
plan layout from a typical floor indicating the perimeter vs. core 
thermal zoning approach 

orientation. Vertical fenestrations are in the form of horizontal 
strip windows uniformly distributed to each orientation 
and window-to-wall ratio is about 33%. 

The model consists of 15 thermal zones configured 
according to perimeter–core zoning approach. The HVAC 
system is a packaged single duct multi-zone variable air 
volume (VAV) type with three gas furnaces, 15 electric 
terminal reheats, and three differential dry-bulb economizers. 
Gas burner efficiency is 80% and cooling coils have a rated 
COP of 3.2. System fans are variable volume type with 
efficiency of 0.59 at maximum 1109 Pa pressure rise. The 
heating set-point is 21℃ with a setback of 15.6℃, while the 
cooling set-point is 24℃ with a setback of 26.7℃ during 
unoccupied times of the day. The total office occupancy  
is 268 people with a maximum density of 5.38 per 100 m2 
which is modulated at each simulation time step to represent 
typical hourly occupancy schedules, as shown in Fig. 2. 

The reference model is assumed to be equipped with 
electric lighting system with a power density of 10.76 W/m2 
which is also assumed for electric plug loads. Two elevators 
at 20 HP are deployed for vertical transportation within the 
building with a total power of 32.1 kW. Occupancy, electrical 
equipment and lights are the sources of office space heat 
gains following the occupancy profiles indicated in Fig. 2. 
Air infiltration is assumed only for exterior facade area of 
perimeter zones at the rate of 0.002 m3/(sec·m2). This rate is 
assumed to be 25% of its maximum during operation of the 
mechanical ventilation system. The reference office model 
is simulated under the environmental boundary conditions 
for the location of Chicago, IL, USA (41°N, 87°W) which is 

 
Fig. 2 Hourly occupancy profiles for typical medium-sized office 
buildings 
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classified as ASHRAE Climate Zone 5A. According to the 
TMY III (Typical Meteorological Year) weather file, Chicago 
has a heating dominated, cool and humid weather conditions 
with annual heating and cooling degree days of 506 and 
3430, respectively (with respect to 18℃ baseline). Annual 
average of maximum solar radiation on a horizontal surface 
is reported as 8.12 and 1.8 kWh/m2 for direct and diffuse 
components, respectively.  

3 Investigated design variables 

The objective of this study is to propose an open-source 
computational approach for minimizing the life cycle costs 
of building envelope system investment and building energy 
system operation. Focus is given to key components of 
external envelope assemblies constituting the building systems 
of external walls, roofs, and vertical fenestration. The design 
variables subjected to the optimization procedures are thermal 
insulation thickness (cm) of external walls and roofs and 
glazing unit types with varying U-factor (W/(m2·K)), Solar 
Heat Gain Coefficient (SHGC), and Visible Transmittance 
(VT) performance specifications. Among other possible 
design measures, the specific ones mentioned above are 
chosen as a result of preliminary multi-variate sensitivity 
analyses which indicated that thermal insulation thicknesses 
and glazing types are responsible for the significant portion 
of variability in the output of heating and cooling energy 
consumption for medium-sized offices under heating 
dominated climates along with infiltration rates (Karaguzel 
and Lam 2012). However, infiltration rate variable is excluded 
from this study due to a lack of cost data associated with 
envelope air tightness measures. The proposed computational 
framework has the flexibility of being applied to a wider 
range of design variables with increased cardinality at the 
expense of computational resources.  

3.1 Thermal insulation of external walls and roof 
assemblies 

External wall construction of the reference model is 
composed of an insulated steel frame with wood siding and 
gypsum wall board (GWB) finish on the outer and inner 
surfaces, respectively. Thermal insulation layer is positioned 
at the core of this assembly, the thickness of which is varied 
from 0.00 cm to 15.24 cm with 2.54 cm intervals while keeping 
all other external wall layers unchanged during parametric 
perturbations. Extruded polystyrene (XPS) rigid insulation 
is chosen to be the insulation material, the properties of which 
are derived from ASHRAE material data set (ASHRAE 
2005). The insulation layer has a thermal conductivity of 
0.028 W/(m·K), density of 29 kg/m3 and a specific heat of 
1210 J/(kg·K). This layer is assumed to have a medium 

smooth surface characteristic with solar and visible absor-
ptance of 0.6 while the thermal absorptance is assumed as 
0.9 for EnergyPlus models.  

So as to conduct life cycle cost minimization, the 
optimization inputs are defined as the unit material cost for 
each different design variant obtained from the U.S. RS Means 
Cost Database (Cost Works 2012) as shown in Table 1. 

Cost items for XPS rigid insulation are identified with 
three distinct categories for material thicknesses from 2.54 cm 
to 7.62 cm associated with varying thermal resistance values 
(i.e., R-factors). Identified costs in Table 1 only represent 
“bare material” costs excluding the items of labor and 
overhead costs and benefits. R-0.0 resistance level represents 
existing buildings that may be subjected to energy retrofit 
studies. R-0.8 resistance level achieved with 2.54 cm of XPS 
rigid insulation represents ASHRAE 90.1-2004 (ASHRAE 
2004) compliance for external walls for the Climate Zone 5A. 
Preliminary multi-variate parametric simulations revealed 
R-5.2 as the critical thermal resistance level beyond which 
increment in insulation thickness produces marginal 
efficiency gains in space heating energy consumption. 
Therefore, R-5.2 level and a corresponding thermal insulation 
thickness are taken as the upper limit of the parametric set 
for the variable category of external wall insulation.  

Roof construction of the reference office model is 
built-up flat roof type with insulation entirely above deck 
(IEAD) configuration according to ASHRAE 90.1-2004 
specifications. XPS insulation for roof decks with varying 
thicknesses from 2.54 cm up to 15.24 cm is assumed for the 
simulation models. Unit costs of insulation materials are 
obtained from the U.S. RS Means Cost Database (Cost 
Works 2012) which provides unit costs for four different 
XPS roof deck insulation materials (Table 2). Existing 
office buildings that need energy retrofit are represented by 
R-0.8 resistance level. ASHRAE 90.1-2004 compliant roof 
assemblies are identified with R-2.6 level and the upper 
limit is selected as R-5.2 representing the critical point after 
which diminishing returns on energy efficiency gains are 
observed during preliminary parametric analysis.  

Table 1 Material cost structure for external wall thermal insulation 
variants 

Parametric 
expression

Thickness 
(cm) (inch)

Configuration 
(cm) 

Unit cost 
($/m2) 

R-factor 
(m2·K/W) 

W0 0.00 (0”) 0.00 0.00 R-0.0 

W1 2.54 (1”) 2.54 5.40 R-0.8 

W2 5.08 (2”) 5.08 10.75 R-1.7 

W3 7.62 (3”) 7.62 15.50 R-2.6 

W4 10.16 (4”) 7.62+2.54 20.90 R-3.5 

W5 12.70 (5”) 7.62+5.08 26.25 R-4.4 

W6 15.24 (6”) 7.62+7.62 31.00 R-5.2 
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Table 2 Material cost structure for roof thermal insulation variants 

Parametric 
expression 

Thickness 
(cm) (inch) 

Configuration 
(cm) 

Unit cost 
($/m2) 

R-factor 
(m2·K/W) 

R1 2.54 (1”) 2.54 4.74 R-0.8 

R 2 5.08 (2”) 5.08 9.48 R-1.7 

R 3 7.62 (3”) 7.62 10.79 R-2.6 

R 4 10.16 (4”) 10.16 12.10 R-3.5 

R 5 12.70 (5”) 7.62+5.08 18.45 R-4.4 

R 6 15.24 (6”) 7.62+7.62 24.80 R-5.2 

3.2 Glazing unit types 

Six different glazing unit types are taken into consideration 
to cover a range of systems from single clear monolithic to 
double clear and low-E coated insulated glazing units (IGUs) 
with varying overall thicknesses. Unit material costs (bare 
material only) are obtained from the U.S. RS Means Cost 
Database (Cost Works 2012). Within the glazing alternatives, 
single clear type represents existing buildings that need 
energy retrofit measures. ASHRAE 90.1-2004 compliance 
can be achieved with double clear 16 mm glazing unit. 
25 mm thick double low-E on both panes represents the high- 
performance glazing unit alternative for vertical fenestrations 
of office buildings.  

The required EnergyPlus simulation model inputs   
for window assemblies equipped with the optimization 
alternatives given in Table 3 are first generated within 
WINDOW 6.3 program (LBNL 2012) by selecting representa-
tive glass panes and gas types from the current International 
Glazing Database (IGDB v22). Developed window assembly 
model definitions are then exported to EnergyPlus as 
individual text-based IDF (Input Definition File) blocks 
which are integrated with whole-building models to be used 
alternatively during parametric perturbations. Table 4 lists 
the selected glass and mid-pane gas types from IGDB with 
their database identifier numbers so as to develop window 
assembly models within WINDOW 6.3 program.  

Table 3 Material cost structure for glazing unit type variants 

Performance 
indices 

Parametric 
expression Glazing unit alternative 

Unit 
cost 

($/m2) 

Center-of- 
glass  

U-factor 
(W/(m2·K)) SHGC VT 

G1 Single clear glazing 58.0 5.82 0.817 0.886

G2 Double clear—16 mm thick 140.0 3.44 0.699 0.791

G3 Double clear—25 mm thick 168.0 2.68 0.703 0.791

G4 Double low-E—16 mm thick 276.0 2.97 0.600 0.763

G5 Double low-E—25 mm thick 280.0 1.80 0.596 0.763

G6 
Double low-E—25 mm both  

panes coated 320.0 1.38 0.557 0.737

Table 4 IGDB glass and mid-pane gas types for selected glazing 
unit alternatives 

Parametric
expression Glazing unit alternative 

Glazing unit combination 
with IGDB ID number 

(#) 

G1 Single clear glazing 5012 

G2 Double clear—16 mm thick 5012+1(4mm air)+5012

G3 Double clear—25 mm thick 5012+1(13mm air)+5012

G4 Double low-E—16 mm thick 5235+1(4mm air)+5012

G5 Double low-E—25 mm thick 5235+1(13mm air)+5012

G6 
Double low-E—25 mm both 

panes coated 5235+1(13mm air)+5235

 

4 Methodology: Integrated-simulation based 
optimization 

4.1 EnergyPlus–GenOpt coupling framework 

The integrated-simulation based optimization procedure 
proposed in this study is accomplished by coupling the whole- 
building energy simulation program of EnergyPlus v6.0 
with GenOpt v3.0 (Wetter 2011), a JAVA-based extensible 
generic optimization program. GenOpt incorporates a range 
of multi-dimensional numerical optimization algorithms 
that can be coupled to any simulation program that has a 
text-based input/output (I/O) structure (e.g., EnergyPlus). 
GenOpt avoids modifying the source code of the coupled 
simulation programs through the use of such a text-based 
I/O integration approach. This program is designed for 
numerical optimization problems where the evaluation of 
objective function is computationally expensive (as in the 
case of whole-building energy simulation) and derivatives 
of this function (non-existing formula for determination of 
the gradient) are not available or not even existing (i.e., 
treating the simulation program as a black-box in the 
optimization set-up). Independent design variables accepted 
by GenOpt can be continuous, discrete (integer programming), 
or a combination of both. Constraints of independent 
variables are implemented as constraint sets (i.e., box 
constraints) while dependent variables can be constrained 
using penalty or barrier functions. GenOpt is a single- 
objective optimization program and does not provide 
functionality for extracting the Pareto front through a single 
optimization run under multi-objective criteria. 

The framework of EnergyPlus–GenOpt coupling for 
iterative simulation runs is given in Fig. 3. The GenOpt 
kernel requires a number of input files that have to be 
customized by the user following a predefined syntax, so  
as to launch the coupling simulation program which is 
responsible for calculating the objective function and the 
model response on the specified grid points. After a 
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simulation cycle, GenOpt reads the objective function value 
from the text-based outputs of the program in various file 
types (e.g., CSV, ESO, or HTML files of EnergyPlus outputs) 
after checking possible simulation errors which can be used 
to terminate the iterative cycle. This process is followed   
by GenOpt’s specification of another set of input design 
variables for the next simulation cycle. The built-in optimiza-
tion search algorithms are responsible for the specification 
of this new parameter set. The entire process is repeated 
until a minimum objective function value is found or after 
a certain stopping criterion imposed on the system.  

In the current optimization set-up, EnergyPlus is 
iteratively called by GenOpt for the calculation of objective 
function value which is in turn evaluated by the internal 
numerical optimization methods for the determination  
of the values of independent variables, as shown in the 

coupling framework in Fig. 3. With the integration of these 
techniques, this study proposes a systematic and automated 
optimization platform with multi-dimensional optimization 
algorithm coupled to a detailed and integrated energy 
simulation program. 

4.2 Formulation of the optimization problem 

The office envelope design problem of the study is taken as 
a single objective multi-dimensional optimization problem 
which can be stated as 

Given    d: ( : )nf f X                   (1) 

Find  ( )x f xÎXmin                                 (2) 

Subject to  { } d
d| , {1,..., }n ix x i nÎ ÎX            (3) 

 
Fig. 3 EnergyPlus–GenOpt coupling framework for simulation-based optimization (Adapted from (Wetter 2011)) 
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where x Î X  is defined as the vector of independent 
variables, :f X  is the objective function to be 
minimized and  dnÌX  is the constraint set. All envelope 
design parameters are specified as discrete independent 
variables that can only take pre-defined discrete values 
defined in dn . The optimization problem can be defined 
as box-constrained integer programming without equality 
or inequality constraints on the dependent variables. Since 
GenOpt conducts single-objective optimization, the solution 
is the minimum value of f(·) in the domain of  . Three 
categories of building envelope measures (wall insulation, 
roof insulation and glazing types) are involved in the analysis, 
so this optimization set up is three-dimensional d( 3).n =  

Constraint sets for the independent variables are 
defined as 

{ }1 , {0,...,6}jx W j= Î                              (4) 

{ }2 , {1,...,6}kx R k= Î                             (5) 

{ }3 , {1,...,6}lx G l= Î                               (6) 

External wall insulation alternatives are factored into 
the optimization problem as 7 discrete independent variables 
represented as a constraint set with a finite number of 
elements, as stated in Eq. (4). Similarly, roof insulation and 
glazing unit type alternatives are represented as 6 discrete 
independent variables, as stated in Eq. (5) and Eq. (6), 
respectively.  

The number of intervals (sizes of sets for box constraints) 
for each independent variable category can theoretically  
be unlimited. However, the dimension of the current 
optimization problem (number of different independent 
variable categories) can be increased to the limit of nd= 9 
at most due to the computational limitations of the existing 
algorithms within GenOpt program’s optimizer library 
(Wetter 2011). 

The objective function equation is given as 

M E( ) IC LCCf x = +                               (7) 

The LCC of the building case is taken as the present value 
of material investments and operational energy costs of 
HVAC and other building systems over a specified life span. 
This model excludes the material replacement costs due to 
relatively shorter life span for this LCC analysis. Replace-
ment costs calculations are usually factored in the LCC 
analyses with longer than 25 years life span, which can be 
investigated with an alternative model we have already 
developed and implemented within the GenOpt program. 
The mathematical model for the calculation of f(·) is adapted 
from (Hasan et al. 2008) as the sum of initial material invest-
ment costs (ICM) and energy life cycle costs (LCCE). ICM is 

the sum of all initial unit bare material costs multiplied by 
applicable building surface area (opaque or transparent) and 
is automatically calculated by EnergyPlus. LCCE is the net 
present value of operational energy costs over a specified 
time period and calculated as below (Hasan et al. 2008): 

E pLCC ae E=                                    (8) 

e e1 (1 ) /na r r-= - +                               (9) 

e ( /1 ) /1r i f f e e= - + - +                       (10) 

where:  
a is the discount factor for inflation and escalation in energy 

prices (different a-factors are defined for natural gas and 
electricity consumption), 

ep is the current utility rate for a fuel source ($/kWh), 
E is the simulated annual cumulative energy consumption 

for the building case alternatives (kWh), 
n is the life span of the building, i.e., the life cycle cost analysis 

period (year), 
re represents the real interest rate (including the effect of 

escalation in energy prices),  
i is the nominal interest rate, 
f is the inflation rate.  

Input parameters for the LCC model of this study are 
summarized in Table 5. 

The LCC model explained above is implemented into 
the GenOpt algorithm library by source code extensions and 
re-compiling this program as an executable JAR file. The 
updated GenOpt is capable of computing LCC of a building 
case by the use of a number of user-defined constant variables 
as shown in Table 5 and post-processing of dependent 
variables including simulated energy cost values and material 
costs. 

EnergyPlus object “ComponentCost:LineItem” is used 
to define unit bare material costs for each discrete design 
variable. These entries are then associated with specific 
building surfaces containing respective material. This allows 
EnergyPlus to automatically calculate total building material 
cost taking into consideration all the building surfaces. The 
calculated costs are obtained from CSV (Comma Separated  

Table 5 Input parameters of the LCC model 

LCC model variable Expression Value Unit 

Life span n 25 year 

Inflation rate f 2 % 

Escalation rate e 1 % 

Utility rate* ep 
0.154 (electricity) 

0.0291 (natural gas) $/kWh 

Nominal interest rate i 7 % 

* Obtained from (BLS 2011) 
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Value) files that are provided by EnergyPlus and then 
parsed by GenOpt using specific pre-defined delimiters at 
each cycle of the automated optimization set up.  

4.3 Optimization algorithm 

The optimization algorithm utilized in this study is Particle 
Swarm Optimization (PSO) in the optimizer library of 
GenOpt. This algorithm is a type of meta-heuristic 
population-based and stochastic optimization techniques 
proposed by Eberhart and Kennedy (1995). 

The principal reasons for selecting PSO algorithm for 
the current optimization problem can be listed are: 
1) PSO makes no assumption about the problem being 

optimized (does not require approximate gradient of the 
objective function).  

2) PSO can handle non-linear, non-differentiable functions. 
Therefore, PSO is a suitable algorithm to couple with 
EnergyPlus simulation engine which includes heat balance 
solution algorithms (for the calculation of the objective 
function value) which can be discontinuous and not 
provide derivatives at every point. 

3) PSO appears to be more suitable for problems with discrete 
variables (due to the concept of particles). Due to the 
nature of building based design decisions, all independent 
variables of this study are discrete which can take on 
certain values.  

4) PSO has a computationally less intensive mathematical 
structure and shows relatively faster convergence. 
The basic PSO formulation can be given as (Wetter and 

Wright 2004): 

1 1 2 2ˆ( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i i i iv t v t c r x t x t c r g t x t+ = + - + -   (11) 

( 1) ( ) ( 1)i i ix t x t v t+ = + +                          (12) 

The position of a particle randomly generated particle (i) 
at the current iteration (t) is updated to the next iteration 
( 1)t +  by the addition of a velocity component ( ( 1)),iv t +  
a cognitive component 1 1 ˆ( [ ( ) ( )]),i ic r x t x t-  and a social 
component 2 2( [ ( ) ( )]).ic r g t x t- The velocity component is 
updated based on inertia component ( ( ))iv t  that keeps 
particle moving in the same direction that it was previously 
moving; the cognitive component is affected by the particle’s 
own memory (cognitive behaviour) for the regions of the 
search space in which it experiences lowest objective function 
values; and the social component forces particle to move  
to regions which contain the smallest objective function 
experienced by all members of the swarm (social behaviour). 
r1 and r2 are random values for stochastic operations. c1 and 
c2 are user defined coefficients that can affect the movement 
of particles with respect to social and cognitive influences. 
PSO evaluates the objective function value at a finite set of 

points (coined as particles) which are randomly generated. 
The social behaviour of flocks of birds or schools of fish are 
used as a guiding principle for the change of each particle 
from one iteration to the next. The movement of a particle 
is a combined effect of its cognitive and social behaviour. 
Each new generation of particles is formulated by individual 
velocity and position updates until a stopping criterion is 
reached. The mechanism of particle update in PSO algorithm 
is illustrated in Fig. 4 (Mikki and Kishk 2008). 

Since all enclosure design options are represented by 
discrete independent variables in this study, PSO on Mesh 
algorithm is used within GenOpt v3.0 environment. Table 6 
summarizes the PSO algorithm parameters used for the 
optimization runs. 

 
Fig. 4 The mechanism of particle update in the PSO algorithm 
(Adapted from (Mikki and Kishk 2008)) 

Table 6 PSO algorithm parameters for the optimization 

Algorithm parameter 
Value/ 

attribute Algorithm parameter
Value/ 

attribute

Neighbourhood topology Von 
Neumann Cognitive acceleration 2.8 

Neighbourhood size 3 Social acceleration 1.2 

Number of particles 12 Constriction gain 0.5 

Seed for random number 
generator 0 Maximum velocity  

(discrete PSO) 4 

Number of generations 10   

5 Optimization results and discussions 

Since the current study is focused on single-objective 
optimization of the total LCC of a reference office building 
case, a single solution is generated as the outcome. This is 
the design combination that provides the lowest LCC and 
can be referred as the best iterate (x*). In this case, the best 
iterate is found as 

x*= {W6, R5, G5} (global minimum point) 
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This is the design option having 15.24 cm (6" ) of external 
wall insulation, 12.70 cm (5" ) of roof insulation and equipped 
with 25 mm thick double low-E IGU. The total life cycle 
cost (over a 25 years period) for this solution is $3 054 576 
which is composed of life cycle natural gas and electricity 
cost (associated with all building energy systems) and initial 
material investment costs, as shown in Fig. 5. 

The global optimum model solution demonstrates that 
for an office building case, choosing the “best” material 
specification alternative for all design choices (such as the 
model with W6, R6 and G6 combination) does not necessarily 
provide the best overall design choice in terms of life cycle 
costs over a long run. Hence, the optimal point (combination 
of W6, R5, G5) indicated by this simulation-based optimization 
study (with a relatively lower dimensionality) can be 
unintuitive to the designers and such a solution may not be 
reached through simple heuristics and/or expert judgment. 
The unique contributions of such analytical feedbacks can 
be enhanced in more extensive optimization studies with 
increased degrees of freedom as well as cardinality. 

It can be seen from Fig. 5 that about 91% of the LCC is 
due to the electricity consumption over the analysed life 
span. This is due to the fact that about 95.1% of total annual 
site energy consumption of this case is from electricity. 
Natural gas is only used partly for space heating and service 
water heating systems. Furthermore, material LCC only 
includes initial investments and no replacement is taken 
into account during the 25-year analysis period.  

Results of optimization runs revealed that initial/baseline 
case (xb) and the maximum point (xmax) are the same for 
this study: 

xb= xmax= {W0, R1, G1} (global maximum point) 

The initial case model has external walls with R-0 thermal 
insulation, 2.54 cm (1" ) of R-0.8 roof insulation, and windows 
with single clear glazing units. The total LCC for this model 

 
Fig. 5 LCC components of the global minimum point x* (best iterate) 

alternative is about $4 289 633 as shown in Fig. 6. Both the 
best and worst iterate (global minimum and maximum 
points) have the LCC for electricity as the largest portion of 
the total LCC. 

After identification of maximum point and the best 
iterate we can provide the normalized cost reduction (NCR) 
value (Wetter and Wright 2004) computed from 

*
b bNCR [ ( ) ( )]/ ( )f x f x f x= -                       (13) 

The normalized cost reduction (NCR) is found to be 
0.287 through optimization of building envelope parameters 
discussed in this study. Further cost analysis reveals that 
the optimum design case has a construction material cost 
differential of 208 766 USD over the initial case. However, 
such an investment can provide a savings (net present value) 
of 1 235 057 USD. Such a cost structure indicates a simple 
pay-back period of 4.2 years for the extra investment 
dedicated to improvements on wall, roof thermal insulation 
and glazing unit types. The comparison of annual site energy 
consumptions of the best iterate and the initial case (which 
is also the maximum point) from EnergyPlus simulation 
results is shown in Table 7. 

 
Fig. 6 LCC components of the global maximum point xmax (worst 
iterate) 

Table 7 Comparison of annual site energy consumption (by end- 
use breakdowns)  

Energy use intensity (kWh/m2)

End-use category 

x*  
(minimum 

point) 
(best iterate) 

xmax  
(maximum 

point) 
(worst iterate)

Percent 
deviation 
(worst to  

best iterate) 
(%) 

Space heating 22.0 89.1 –75.3 

Space cooling 18.3 24.8 –26.2 

Fans & pumps 4.61 7.41 –37.8 

Lights & equipment 46.8 46.8 0.0 

Service water heating 2.0 2.0 0.0 

TOTAL BUILDING 153.1 229.6 –33.3 
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Optimized design solution shows 75.3% energy use 
reduction for space heating and 26.2% for space cooling 
with respect to the maximum point. An energy reduction 
up to 33.3% can be achieved with optimized design at  
total building level due to the fact that building envelope 
measures only affect space heating, cooling and fan energy 
consumptions while all other end-uses remain constant 
between different design alternatives. Electricity is the main 
energy source for both cases and all end-uses except space 
heating and service water heating relies on electricity. 93.3% 
of energy consumption is from electricity source for the 
maximum point/initial case and 75.5% for the best case, 
which is due to the specified HVAC system configuration 
for the reference building model.  

6 PSO algorithm verification and computational 
resource costs 

To check the effectiveness of PSO algorithm in finding the 
global optimum instead of sticking to local minima, the full 
enumeration method is applied in this study by the use of 
MESH algorithm of GenOpt v3.0 (Wetter 2011). Given the 
dimension of optimization problem d( 3)n =  and the number 
of the discrete independent variables (7 walls, 6 roofs, 6 
glazing unit types), the full enumeration (exhaustive search) 
of the design parameter space requires 252 EnergyPlus 
simulation runs. The MESH algorithm simply spans a 
multi-dimensional grid in the space of the independent 
parameters and evaluates the objective function at each and 
every grid point (Wetter 2011). The PSO algorithm identified 
the global optimum (with given variable set and using the 
algorithm parameters in Table 6) with 161 EnergyPlus 
simulation runs. Therefore, only 63.8% of the entire design 
parameter space is necessarily enumerated to locate the 
population minimum point. 

Comparison of PSO optimization with full enumeration 
results showed that the global minimum can be detected by 
PSO with a very high degree of accuracy for this particular 
case. Multiple runs of the same problem with PSO provide 
the same minimum point to the one that is obtained through 
full enumeration of the search space. A single annual 
EnergyPlus simulation run takes about 88.7 seconds on a 
PC with 2.67 GHz CPU and 16.0 GB installed RAM. So as 
to reduce the time dimension of the computational effort to 
execute optimization models, parallel processing functionality 
of GenOpt program was used. GenOpt provides a batch file 
(RunEPlusParallel.bat) which can initiate multiple EnergyPlus 
program simultaneously with a minor code modification 
needed to indicate the correct version of the program being 
initiated. Meanwhile, a necessary setting within EnergyPlus 
executable model was made such that the number of 
allowable simultaneous EnergyPlus processes is equal to the 

number of CPU cores existing in the computer executing the 
optimization model. Multiple threads can then be assigned 
to a single optimization task that can significantly reduce the 
computation time. In this study, the full enumeration runs 
executed on an 8-core machine result in about 46.5 minutes of 
total iteration run time, while the PSO algorithm requires only 
29.75 minutes to converge to the global minimum point, which 
means that the computing time can be reduced by 36.0%. 

7 Conclusions 

Minimization of total building life cycle cost (including 
initial material costs and life cycle operational energy costs) 
of a reference medium size office building over a 25-year 
time period is conducted through integrated simulation- 
based optimization technique in this study. A computational 
coupling framework for the EnergyPlus whole-building 
energy simulation program and GenOpt generic optimization 
tool is implemented to achieve the goal. Three main 
categories of building envelope retrofit measures are taken 
into consideration as discrete independent variables to   
be investigated, namely, external wall thermal insulation 
thickness (from zero to 15.24 cm with 2.54 cm increments), 
roof thermal insulation thickness (from 2.54 cm to 15.24 cm 
with 2.54 cm increments) and glazing types (from single clear 
to double, with/without low-E with different overall thickness). 

Main findings of this study can be listed are: 
1) Design option with 15.24 cm (6") and 12.7 cm (5") of 

wall and roof insulation and 25 mm thick double low-E 
IGU is found to be the optimum design solution for the 
medium-sized commercial reference office building in 
the ASHRAE Climate Zone 5A.  

2) The optimum design solution can yield a 28.7% life cycle 
cost reduction ($1 235 057 reduction) over a 25 years life 
span. Simple pay-back time for the investment differential 
imposed by the optimum solution is 4.2 years.  

3) The PSO algorithm implemented in the parametric setup 
shows satisfactory performance in terms of accuracy  
and efficiency. It can result in a 36.2% reduction in the 
computational effort to converge to the global minimum 
point with a very high degree of accuracy compared to 
the full enumeration technique. 

4) The optimal design solution suggested by the implemented 
approach indicates that choosing the “best” specification 
from all design options does not necessarily provide the 
best overall design solution in terms of life cycle costs 
over a long run. This implies the possible potentials of 
simulation-based optimization as a design decision support 
method in terms of detecting the global optimum design 
choices which are otherwise ignored or unrecognized 
due to inefficient and conventional methods of simple 
heuristics or even certain “expert” judgments. 
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This integrated simulation-based optimization framework 
can be applied to any type and size of building case for new 
construction and advanced energy retrofit (AER) projects. 
The tools utilized in this framework are open-source and 
non-commercial products. The modular and open-source 
programming architecture can be extended and/or updated 
to calculate customized objective functions values in order 
to serve different aspects of building design decision making. 
Future development work for this study will include further 
refinement of the PSO algorithm parameter so that the 
optimization can converge to global minimum with even 
less number of simulation iterations. Cardinality and dimen-
sionality of the problem can be expanded by increasing the 
number of intervals for the constraint sets of existing 
variables and by adding other building envelope measures 
to the formulated design optimization problem. 
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