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Subtask 4.2: Cost Effective Building Retrofit Through Robust Control and Scalable Algorithms 
 
Deliverable #18: Demonstration of prototype building control algorithms that provide 
guaranteed performance 
 
Brief Summary:  In BP2, researchers from Purdue University, United Technologies Research 
Center, and Virginia Tech developed and demonstrated a set of tools and approaches for 
generating and implementing building-specific control algorithms that minimize energy 
consumption and energy costs while maintaining occupant comfort. The general approach 
involves the use of model-based predictive control (MPC) with reduced-order models and 
inverse (data-driven) models for the building envelope, indoor environment, and plant. The 
models could be generated from either detailed physical models (e.g., TRNSYS for the building 
and plant, CFD for the indoor environment) or using measurements from short-term (e.g., two-
week normal operational data and/or functional test data) monitoring at the site. The models are 
utilized in combination with an integral cost function that considers the cost of energy and 
impacts on comfort. The primary goals of this subtask are to develop and demonstrate a process, 
tools and algorithms that can significantly reduce the development and commissioning time/cost 
to implement optimal supervisory control for retrofits in buildings.  Accomplishments in the BP2 
have included 1) development of control-oriented models along with case study demonstration 
results, which covers reduced-order and inverse (data-driven) models for building envelope, 
indoor-air, and HVAC equipment; 2) development, comparisons and implementation of MPC 
approaches and algorithms along with case study results, which covers simulation-based studies 
for both Building 101 and the Purdue Living lab; and 3) scalable and cost effective 
implementation of optimal building control, which covers preliminary study on the hierarchical 
control architecture, state estimation from sensed data and efficient algorithms for optimal 
control with meaningful cost models. 

Executive Summary 
In the United States, the buildings sector (commercial & residential) accounts for nearly 41 
percent of the primary energy consumption. A significant amount of energy in buildings is 
consumed by their heating, ventilation, and air-conditioning (HVAC) systems. Efficient and 
automatic building control algorithms could help improve the energy efficiency of HVAC 
systems and thus reduce the overall energy consumption in buildings. Traditionally, building 
control algorithms are based on ad-hoc and heuristic rule-based approaches that typically require 
significant effort in the tuning process during the commissioning and retro-commissioning 
processes. Furthermore, the tuned control approaches may not be close to the optimal solution 
and control performance cannot be guaranteed if the actual operational conditions have drifted 
from these trial-and-error based tuning ranges. Recently, model-based optimal control has been 
investigated for the control of full scale (or partially) HVAC systems and thermal mass in 
buildings. Among possible approaches, model predictive control (MPC), an optimization-based 
control strategy, has gained a lot of attention for application to building automation and controls 
because of significant potential for energy consumption and/or energy cost savings. MPC utilizes 
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dynamic building and HVAC equipment models and input forecasts to estimate future energy 
usage and employs optimization to determine control inputs that minimize an integrated cost 
function for a specified prediction horizon.   
 
In Budget Period 2 (BP2), researchers from Purdue University, United Technologies Research 
Center, and Virginia Tech within the EEB task 4.2 developed and demonstrated a set of tools and 
approaches for generating and implementing building-specific control algorithms that minimize 
energy consumption and energy costs while maintaining occupant comfort. The general approach 
involves the use of model-based predictive control (MPC) with reduced-order models, inverse 
(data-driven) models for the building envelope, indoor environment, and plant. The models could 
be generated from either detailed physical models (e.g., TRNSYS for the building and plant, 
CFD for the indoor environment) or using measurements from short-term (e.g., two-week normal 
operational data and/or functional test data) monitoring at the site. The models are utilized in 
combination with an integral cost function that considers the cost of energy and impacts on 
comfort. The primary goals of this subtask are to develop and demonstrate a process, tools and 
algorithms that can significantly reduce the development and commissioning time/cost to 
implement optimal supervisory control for retrofits in buildings. 

Accomplishments in the BP2 have included 1) development of control-oriented models along 
with case study demonstration results, which covers reduced-order and inverse (data-driven) 
models for building envelope, indoor-air, and HVAC equipment; 2) development, comparisons 
and implementation of MPC approaches and algorithms along with case study results, which 
covers simulation-based studies for both Building 101 and the Purdue Living lab; and 3) scalable 
and cost effective implementation of optimal building control, which covers preliminary study 
on the hierarchical control architecture, state estimation from sensed data and efficient 
algorithms for optimal control with meaningful cost models. In the following sections, an 
executive summary is provided for these accomplishments.  

Reduced-Order Building Modeling 

Computationally efficient building models are needed for practical and scalable implementation 
of model-based predicted control (MPC) in buildings.  In this project, a methodology has been 
developed, demonstrated, and evaluated for generating a reduced-order building model from a 
detailed description of a multi-zone building. The methodology has been demonstrated and 
evaluated for a 59-zone building (Building 101 at the Navy Shipyard, Philadelphia, PA).    
The first step of the methodology involves using a building description to create a full-order, 
linear-time-invariant (LTI), state-space representation of the whole building dynamic behavior.   
The overall system of equations is then broken down into smaller subsystems of equations and 
balanced truncation is applied to each subsystem separately to create reduced-order models.   
Solving a number of smaller model-order reduction problems dramatically reduces the 
computational requirements as compared with solving a single model-order reduction problem 
for the entire building. The subsystem reduced-order models are then assembled in a complete 
building model and an additional step of model-order reduction is applied.  
 
Comparisons between reduced-order model (ROM) and TRNSYS predictions were performed 
over a whole year for all 59 zones of Building 101 for both open-loop and closed-loop response 
of zone air temperatures.  In general, the agreement is excellent.  Sample comparisons for open-
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loop response between TRNSYS and the ROM for a zone on the 3rd floor are shown in Figure 1 
for several days.  These represent the “worst” case results that were obtained and yet the 
agreement is very good. The solid line (TTRN) and dashed line (Tr) represent zone air temperature 
profiles generated by TRNSYS and reduced-order models, respectively. 

 
Figure 1 Open-loop response model comparisons between TRNSYS and reduced-order models 

(8th zone on the 3rd floor, May) 

Compared to TRNSYS, the computation was reduced by about a factor of 100 for the 59-zone 
simulation as demonstrated in Table 1. These data were determined for one-year simulations 
with a 3.10 GHz (32 bit) computer.  Based on these results, the ROM is more appropriate for use 
in optimization, optimal control or any high level control than existing modeling approaches.  
The time required to generate the ROM was also evaluated and was an order of magnitude less 
than the TRNSYS one-year simulation time. Therefore, in addition to controls applications, the 
computational savings associated with application of a ROM indicate that this approach may be 
useful for general building simulation, particularly when considering parametric studies and 
optimization for design. 

Table 1 Computational time comparison for ROM and TRNSYS with one-year simulation 

Time step 
[min] 

TRNSYS 
[sec] 

ROM 
[sec] 

10 876.9 8.7 

30 482.6 4.7 

60 248.5 3.0 

Coupled Indoor-Air Model  

Many advanced HVAC components and systems, such as chilled beams and displacement 
ventilation, rely on vertical temperature gradients for effective operation. Moreover, accurate 
assessment of environmental-quality must be based on conditions in appropriate occupied zones 
and not on large-scale averages. In particular, large comfort variations may exist in spaces that 
have relatively large aspect ratios in combination with large south facing windows.  Accordingly, 
it is appropriate to consider indoor environment models that accurately predict spatially varying 
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comfort conditions. However, the computational requirements necessary to consider this 
situation using traditional CFD are too large to be practically applied.  As a result, a 
methodology has been developed for generating a ROM for indoor air using CFD results that is 
then coupled to a building envelope ROM to enable controls-oriented models that consider 
spatial comfort variations.  The methodology was demonstrated for one of the Purdue Living 
Laboratory rooms. As indicated in the Figure 2, the Indoor-Air model uses wall surface 
temperatures from the building envelope as inputs and dynamically determines the resulting wall 
surface fluxes. We have used FLUENT software to model internal flow including temperature, 
velocity, pressure, as well as water vapor and CO2 mass fractions. The resulting input/output data 
was fit with an ODE model and then further reduced using the IRKA algorithm developed in this 
project. 

 

Figure 2 Coupled Envelope/Indoor-air Model 

The indoor-air model is realized as an LTI system that approximates specified input-output 
behaviors observed in computational fluid dynamics (CFD) simulations. A grid for the CFD 
simulation for the Purdue Living Laboratory is shown in Figure 3 (left). The yellow zones depict 
(24) locations for student work areas; their numbering is shown on the right. Volumetric source 
terms are specified in the odd-labeled zones to emulate generation of water-vapor, carbon-
dioxide and energy in these zones. In addition, (volume-averaged) human comfort metrics are 
read from all zones. The brown/green `cloud' structures support (8) inlet diffusers, and a single 
air-return is located on the back (North) wall.  The bounding surfaces for the VAV-room were 
decomposed into 19 sections as shown in Figure 4. The first step in developing the coupled 
ROM is to generate a building envelope ROM as previously described.  Steady state outputs 
from this model at some nominal condition are perturbed and used as inputs to drive a CFD 
simulation that produces temperature and velocity fields.  The CFD results are then used to fit a 
LTI ROM for the indoor air.   

 
Figure 3 CFD Grid and Occupied Zones for the Purdue VAV Room 
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Figure 4 Interior Surfaces for the Purdue VAV Room 

The coupled building/indoor air ROM model was used to assess variability in comfort conditions 
and the importance of thermostat location on comfort conditions and cooling requirements for 
the Purdue Living Lab 3.  Figure 5 shows time histories of comfort conditions for a well-mixed 
room model and three locations for the ROM coupled model.  The coupled model predicts 
dramatic spatial differences in the comfort conditions (much higher air and mean radiant 
temperatures near the window (oz15); higher air velocities and lower temperatures near diffusers 
(oz18)). The well-mixed model predicts conditions within the middle of the values determined for 
the coupled model.  This is because the average room temperature was used for feedback control 
for the coupled model.  For this case, the cooling requirement for the coupled/indoor air model 
was close to that for a fully-mixed zone model.  However, it is unrealistic to use the average zone 
air temperature for feedback control. Results were also generated for the same day with a 
thermostat located near the south windows (average of zones 1, 5, 10, 15, and 20). In this case, 
peak temperatures in all local zones were lower by 2 to 3 oC compared to control based on room 
average temperature.  This led to an increased heat extraction rate for the coupled model 
compared to the well-mixed model as shown in Figure 6.  
 
Figure 7 demonstrates the importance of thermostat location on the overall comfort as 
represented using predicted mean vote (PMV). The right plot shows PMV for the sensor located 
near the south window. In this case, the conditions are slightly warm near the window during the 
middle of the day but cold in other locations. Moving the thermostat away from the windows to 
zone 2 improves comfort in most of the space except near the windows where the conditions 
become quite warm. 
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Figure 5 Indoor environmental metrics based on feedback control using average room 
temperature (oz15 = average of zones nearest south window (zones 1, 5, 10, 15, and 20); oz02 = 
occupied zone 2, on west end of second row in Figure 6; oz18 = occupied zone 18, near back of 

room away from windows) 

 
Figure 6 Heat extraction rate based on feedback control using the average of zones 1, 5, 10, 15, 

and 20 (oz 15, CFD-coupled model) as compared with well-mixed mode 
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Figure 7 Comparison of PMV variations for well-mixed model with CFD-coupled model 

assuming feedback based on zone 2 (left plot) and the average of zones 1, 5, 10, 15, and 20 
(right plot) 

Inverse Building Modeling 

Building envelope inverse model 
An alternative to reduced-order modeling based on a physical description is to train an inverse 
model using measurements.  Both approaches are important as tools for applying model-based 
predictive control on a widespread basis.  The inverse modeling considered in this study extends 
previous work to allow scalability to large multi-zone buildings and is based on a thermal 
network representation.  A robust training approach was developed that breaks the large multi-
zone training process into a number of smaller problems that are loosely coupled.  The training 
method was first tested using simulation data and then applied to data from Building 101.   
 
Figure 8 shows example predictions of zone temperatures compared to measurements for three 
zones located in the north wing on the second floor of Building 101given measured inputs for 
solar radiation, ambient temperature, internal gains, and zone cooling.  The model captures the 
zone temperature response reasonably well.  It is believed that the model for Zone 8 was more 
accurate because information for initial parameter estimates were obtained from an on-site 
inspection, whereas the parameters for the other two zones were taken from the inputs to a 
TRNSYS model. Also, zonal internal heat gains were estimated using area ratios and total heat 
gains.  
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Figure 8 Performance of estimated model from measured data. 

Equipment inverse model 
A method was developed for learning the performance of vapor compression cooling equipment 
using limited measurements.  The methodology is based on a gray-box modeling approach that 
utilizes basic physics for the components of the equipment (e.g, compressor, heat exchangers) 
along with empirical parameters that are trained using data.  The model can predict total cooling 
rate, sensible heat ratio, compressor power, condenser fan power, and supply fan power as a 
function of supply air temperature setpoint and air flow, return temperature, and ambient 
temperature.  The method was applied to the multi-stage direct expansion (DX) system and VAV 
air-handling unit (AHU) that serves the north wing of Building 101.  The model was then used to 
assess the impact of supply temperature setpoint on DX unit power consumption to identify 
optimal setpoints.   
 
Figure 9 shows example comparisons between measurements and model predictions for total DX 
unit cooling rate and compressor power consumption.  The root-mean square errors are 5% for 
cooling and 6% for compressor power.  In applying the model, it was found that the optimal 
strategy for supply air temperature setpoints for this system is to use the largest value that will 
provide the needed moisture removal.  Significant energy savings are possible by switching to 
this strategy from the current control, which uses a relatively low fixed supply air temperature 
setpoint.   
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Figure 9 Comparisons of the predicted capacity and compressor power to the actual values 

Data-Driven Model from System Identification 

Modeling accuracy is a key enabler for effective and robust controller performance. A dynamic 
model with reasonable prediction performance (e.g., accuracy and simulation speed) is crucial 
for a practical implementation of MPC.  In the BP2, low-order state-space models are identified 
from the designed input-output responses of thermal zones with disturbances from ambient 
conditions and internal heat gains. A high-fidelity TRNSYS model of an office building (i.e., 
Building 101) was used as a virtual testbed to generate data for system identification, parameter 
estimation, and validation of the proposed model structures.  
 
Figure 10(a) shows comparisons of 2nd order state-space model predictions with data for all 10 
zones served by AHU3 based on validation data. To evaluate the effectiveness of model 
performance for MPC implementation, Figure 10(b) and 10(c) show comparisons of root mean 
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squared error (RMSE) for the 10 zones with predictions of 1 hr., 2 hr., 4 hr., 8 hr., and open-loop 
scenarios based on functional test and TRNSYS baseline input-output data, respectively. The 
scenarios for predicting 1 hr., 2 hr., 4 hr., and 8 hr. ahead were realized by reinitializing the 
system states every 1hr., 2 hr., 4 hr., and 8 hr., respectively. The open-loop scenario did not 
involve any reinitialization of system states. 
 
Note that we performed very aggressive functional tests to fully excite the system dynamics with 
predictive results in Figure 10(b) that appear to be quite good for control design.  For the 
additional model validation results in Figure 10(c), baseline feedback controllers were 
implemented within the TRNSYS testbed. The TRNSYS zone air flow rates and supply air 
temperatures were then fed into the simplified model to determine the zone temperature 
responses that were compared with TRNSYS zone temperatures.  Overall errors in the zone 
temperature predictions for this test case are presented in Figure 10(c). This control input 
scenario is much different than that employed during the model training periods. Overall, the 
model yielded much worse results for both short-term and long-term predictions than those 
presented in Figure 10(b). The degraded model performance under this validation scenario is 
probably due to the fact that the effects of solar radiation and internal loads become more 
important relative to the control inputs (zone supply air flow rate and temperature), as compared 
with the validation scenarios based on functional test data. Future study will be conducted to 
address the aforementioned limitations.  In particular, better models may be needed to approach 
optimal MPC performance in the presence of variable utility rates and demand charges because 
longer prediction horizons are required. Uncertainty analysis for internal and solar heat gain 
predictions should be carried out before these gains are added as inputs to the predictive model. 
Future study will be conducted to address this problem. 

     

(a) Zone model validation (functional tests, 2 hr. prediction) 
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(b) RMSE with input-output data from functional tests (c) RMSE with baseline input-output data 
Figure 10 Validation results for 10 zones in Building 101 

Building 101 Simulation Based MPC Study  

A Modeling Language for Mathematical Programming (AMPL (Fourer et al., 1987)) was 
selected to be used as an optimization platform. Figure 11 illustrates the software architecture for 
optimization-based building control which integrates  

- TRNSYS as a virtual testbed,  
- MATLAB® as a data acquisition and organization interface and  
- AMPL® for solving optimization based control problem.   

Figure 11 Integrated tool chain for optimization based building control algorithm development, 
testing and performance evaluation in simulation 

 
Figure 12 presents a schematic representation of the integration of building and HVAC system 
models with the MPC algorithm. Specifically, the MPC algorithm receives “measurements” of 
the zone temperatures and outside air temperature (uncontrolled disturbance) and uses 
optimization tools to calculate the control inputs based on an internal representation of the 
system dynamics, i.e. building and HVAC equipment models. The control objective considered 
herein is to minimize energy consumption used for air conditioning such that the occupant’s 
thermal comfort is satisfied. 
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Figure 12 Control integration with building system  

 
Simulation studies were conducted to evaluate the effectiveness of the proposed centralized MPC 
controller. The high-fidelity TRNSYS model was adopted as our virtual testbed. A summer 
period was considered for the case study. A TRNSYS simulation was performed over five 
weekdays in the first week of August, 2012. Similar to the study of the data-driven modeling 
approach, the virtual weather data from 2011 was used in the simulation.  

 
Figure 13 presents the temperature profile of each zone controlled by the baseline and the MPC, 
respectively. As can be observed, the centralized MPC controller is trying to regulate the 
temperature in each zone tightly around the upper bound of the thermal comfort region (dashed 
lines in Figure 13) and meanwhile exploiting the trade-offs of DX coil discharge air temperature 
(DAT) setpoint, VAV flow rate setpoint, and VAV reheat coil valve positions to optimize the 
combined energy-and-comfort based costs. 
 

 
Figure 13 Comparisons of zone temperature profiles between baseline and MPC 
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Figure 14 shows comparisons of energy consumption breakdowns between the baseline control 
and the MPC. The system with the proposed MPC strategy demonstrated ~17.5% energy savings 
for the HVAC system. It can be observed that most of the energy savings come from reduced 
electrical energy savings for the compressors within the DX unit. 
 

 
Figure 14 Comparisons of energy consumption breakdown between baseline and MPC 

 
Figure 15 illustrates the main reasons for energy savings brought by the MPC. Compared to the 
baseline control, the discharge air temperature (DAT) setpoint is higher during the whole test 
week, which brought significant savings for the direct expansion (DX) unit power, as shown in 
the lower subplot of Figure 15.  

 
Figure 15 Comparisons of DAT setpoints and DX unit power between baseline and MPC 
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Evaluation of MPC Strategies for Purdue Living Lab case study 

The computational requirements for MPC are a major concern for practical implementation, 
especially when considering the complexities associated with large multi-zone buildings.  
Therefore, simplifying assumptions are often made when formulating a problem that can result in 
loss in optimality. There is a need to understand the tradeoffs between computational 
requirements and optimal performance when considering alternative formulations and 
optimization solvers.  With this in mind, a simulation tool was developed and applied to a case 
study for the Purdue Living Laboratory in order to evaluate alternative MPC formulations and 
solvers.  The different optimal control solutions were compared to a conventional night setup 
control strategy to provide the baseline operating costs from which the cost savings were 
measured.  
 
Table 2 summarizes the performance of the three different solvers that were studied. The 
Quadratic Programming (QP) solver approximates the nonlinear energy cost function with a 
quadratic in order to make the computation of the optimal control tractable. Sequential quadratic 
programming (SQP) extends that idea by iteratively approximating the cost function as a 
quadratic and the search direction is chosen to be the corresponding minimizer.  Move blocking 
refers to the reduction in the degrees of freedom (number of control inputs to be optimized) by 
restricting a fixed number of changes in the control inputs.  The greatest cost savings (9%) 
relative to conventional control were realized using the QP approach.  However, a significant 
fraction of these savings were realized using the move blocking solution with an order of 
magnitude less computing cost.  Additional case studies for more complicated problems with 
other solution approaches will be considered in future work.   
 

Table 2 Comparison of MPC solvers 
Solver Mean AHU Energy Costs

(per day) 
Computational 

Costs(sec/decision) 
Intel Core2Duo  2.1Ghz 

Conventional(Setback  
based) 

1.409 $
 (baseline) 

 

Realtime 
(no optimization involved) 

Quadratic Programming 
(QP) 

1.278 $ 
(9.3 % saving) 

 

4.5 sec 
(24 hour lookahead) 

Move blocking (12 degrees 
of freedom) 

1.306 $
(7.3 % saving)  

0.65 sec 
(24 hour lookahead)

Sequential Quadratic 
programming based solver 

1.300 $
(7.7 % saving)

4.55 sec 
(24 hour lookahead)

  

Scalable and Cost Effective Implementation of Optimal Building Control 

Preliminary Study on the Hierarchical Control Architecture 
During the BP2, while developing and evaluating the technical approach we noted the following 
challenges associated with the potential implementation of a control retrofit using the MPC 
algorithmic approach 

- High commissioning cost – due to time required for model selection and calibration 
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- Maintenance of the control solution – due to the fact that the model parameters can 
exhibit high variability for different operating points 

- Computational scalability – large computation power and time required 
 
To alleviate the above mentioned difficulties, we proposed an approach that can be implemented 
and tested as part of the efforts planned for the BP3. The proposed approach has been developed 
based on the divide and conquer idea, and makes use of optimization tools to achieve optimal 
coordination between the HVAC equipment. Specifically, the proposed approach may use the 
following sequence of decisions at different levels in the hierarchy:  

- For each zone using available measured data one computes current expected demand (to 
compensate for the effects of the thermal load disturbances) based on a  
 Simplified nominal model of thermal zone dynamics and  
 Online uncertainty/load estimation  

- Propagate the expected optimal air conditioning demand (heating or cooling) as a request 
to the AHU level where decision will be made on using optimization on the AHU (air 
flow and discharge air temperature), 

- Given the received discharge air temperature received from AHU, at the VAV level an 
optimization problem can be again solved to provide optimal zone inputs supply air flow 
and supply air temperature.  

- Demand for energy can be further propagated to cooling/heating plant level where a new 
optimization based control problem can be formulated and solved. 

 
Figure 16 presents the obtained optimal decision maps for supply air temperature setpoint and 
supply mass air flow setpoint for a zone, calculated at the VAV level, given a fixed discharge air 
temperature provided at the level of the AHU. The figures show the values of the optimal control 
inputs setpoints with respect to the value of the estimated uncertainty and the value of the 
measured zone temperature. 

 
                 Figure 16 Optimal decision maps for supply air temperature setpoint and supply mass 

air flow setpoint at VAV level  



January 2013 

18 
 

The preliminary results indicate that the on a local level one can optimally calculate the 
supervisory control setpoints that will result in zone temperature control with minimal energy 
consumption. We note that these preliminary results, calculated using optimization, present a 
similar switching pattern with the VAV control inputs often observed in common practical 
implementations. In fact one notes that the calculated optimal control inputs present a on/off 
behavior and the switching boundary, correlated with the zone thermal comfort setpoint band of 
[21.1, 23.89] deg C, can be optimally selected based on the value of the estimated uncertainty 
and the present zone temperature measurement. 
 
The features that will characterize the hierarchical control approach are summarized as the 
following 

- Hierarchical architecture: amenable for parallel and distributed implementation, 
- Minimal modeling efforts of building envelope, 
- Adaptive to model parameters/load variations. 

 
The implementation of the hierarchical control architecture will result in an overall increased 
scalability of the control development and deployment, and increased robustness to unmeasured 
and uncertain disturbances. This will ultimately translate into reduced control commissioning 
time and will allow for continuous adaptation of a control strategy to respond to continuously 
variable loads associated with changing weather conditions, occupant behavior, etc. 
Additionally, enabled by the hierarchical approach to building control, the control retrofit 
strategy will become highly scalable to implementation on a heterogeneous set of buildings. 
 
The hierarchical architecture offers high flexibility to an integration with model based predictive 
control approach that has been developed in the BP1 and the BP2 to exploit the advantages 
offered by prediction coupled with the storage capability offered by the building envelope. 
 
State Estimation from Sensed Data 
It is well known that the performance of MPC deteriorates because of the estimation error.  In 
order to study and quantify the robustness an output feedback MPC, it is necessary to choose a 
suitable strategy for the state estimation.  We focus on the Kalman Filter (KF) since it is the most 
popular tool used in modern control and there is a rigorous proof of the stability with error 
bounds.  Recently, new (local) error estimates have been obtained for the Extended Kalman 
Filter (EKF) which will be essential for Nonlinear MPC (NMPC) that is the basis for the Task 
4.2 work.  To illustrate the potential practical benefits of the sensor location tool, consider the 
results obtained on the test room as shown in Figure 17 below. 

 
Figure 17 Hospital Suite 
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The test case is a suite with one zone devoted to a bed area and the remaining zones are bath and 
dressing areas as depicted in the Figure above.  There are two inlet diffusers and one outflow 
return vent, which is the only outflow when the door is closed. 
 
The estimation error is based on employing a Kalman Filter for state estimation and given by 

        

where is the sensor location,  denotes the expected value of the random variable  and 
denotes the trace of the state estimation covariance operator .  Consequently, the 

optimal sensor location problem is to find an optimal location  such that  is 
minimized. 
 
In Figure 18 below we plot the values of  as the sensor location  moves around 
the wall in the right room.  Here, “upper” refers to the upper wall, “right” refers to the right wall, 
“lower” is the bottom wall, and “left” is the left wall of the bed area. 
 

 

Figure 18 Flow (left) and cost function 
 
We have demonstrated that estimation error can be sensitive to sensor location and demonstrated 
an approach to sensor placement that minimizes the estimation error. 
 
Efficient Algorithms for Optimal Control with Meaningful Cost Models 
MPC implementation relies on rapid, accurate solution of an underlying optimization problem. 
During BP2 we applied optimal control theory to several formulations of efficient cooling 
problems. For example, in one class of problems that included a cost function dependent on peak 
power use we developed a computable optimality condition that characterized the unknown 
peak-power level. We also developed an approximation framework, wherein the infinite-
dimensional optimal control problem was replaced by a finite-dimensional nonlinear 
programming problem (NLP). In this framework the dynamical equations are approximated by 
collocation constraints in the NLP. 


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Figure 19 State (temperature) time histories for an NLP formulation 
 

As shown in Figure 19, there are five cooling periods including one at the beginning 
(approximately [00, 04]) and one at the end (approximately [22, 24]). The control switches in the 
late afternoon tend to keep the air-temperature near its upper bound (dashed-red line), and the 
zone-air temperature exceeds the upper-bound just as the occupied period ends at 1800 h. Note 
that solution of the NLP can be enhanced by accurate derivative information provided by the 
Automatic Differentiation software which is currently under development in subtask 4.2. 
 
The collaborative effort in the BP2 will continue in the BP3 and will involve further 
development and application of the tools.  There are three collaborative activities in this subtask.  
UTRC is focusing on implementation and demonstration for a centralized solution in Building 
101 and West Chester University. Purdue is addressing automatic model generation and 
evaluating the benefits of distributed versus centralized solutions. VT is tackling some of the 
numerical approaches for obtaining models and solving the optimization problems.  This subtask 
will start to categorize optimal control strategies for different building and systems types with 
potential energy savings range.  This will facilitate building owners, operators and energy 
managers to screen, identify and select the appropriate strategies for their buildings.     
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1. Introduction 
The realization of energy efficient building design and operation is possible by integrating on-
site, combined heat and power with energy storage systems, ventilation and cooling systems with 
occupancy behavior. This requires a more substantial base in the system design methods and 
tools. The integration of subsystems that have historically been designed, sold, installed and 
operated in isolation raise risks that can only be reduced by investing in a more substantial base 
in the design science for systems. 
 
Flexible modeling environments for use in design and operation are lacking, and are critical to 
moving designs involving controls, diagnostics implementation with consistency and accuracy 
from conceptual to detailed design and verification. The development of reduced-order building 
models amendable to controls design is essential. The models must address heterogeneity 
involving multi-scale dynamics in buildings, couplings between building envelope, mechanical 
system, equipment and controllers. A modular modeling platform is being developed with 
reusable component libraries to capture the multi-scale dynamics of buildings and for assembly 
of heterogeneous components. The modeling platform is critical to enable a highly automated 
process usable by designers and operators that will be scalable to the entire building stock. 
Automation is the key to reduce design cycle time and cost. Using models to quantify uncertainty 
is critical for system robustness and ensuring the persistence of energy savings throughout a life 
cycle of the building operation. 
 
Nonlinear Model Predictive Control (NMPC) has its roots in the mathematical theory of optimal 
control (OC). The fundamental idea is use a dynamic model to forecast system behavior, and 
then to optimize the forecast and compute the best decision - the control to use at the current 
time. As time and the system's response evolves, the forecast-optimize cycle is repeated to 
determine the best control. Whereas this concept has a long history, progress in computational-
speed and in algorithmic power now makes the approach technically and economically practical. 
 
It's clear that accurate dynamic models are enabling for any NMPC implementation. The 
feedback nature of the implementation provides some tolerance for modeling errors, however, 
model errors almost certainly degrade achievable performance. Accordingly, a significant 
amount of the BP2 effort has been devoted to developing scalable modeling procedures. In order 
to make precise the notion of forecasting system behavior it is necessary to specify the time 
horizon for the forecast. In the case of building energy control the time has to be sufficiently long 
to capture the important dynamics in the buildings thermal behavior. For example, stored thermal 
energy in the building envelope can be used to shape energy consumption and reduce peak-
demand requirements. Longer time horizons increase computational complexity in the 
underlying optimization cycle and this requires informed trade-offs in the NMPC 
implementation. 
 
In a general sense, optimal supervisory control involves minimization of a cost function (e.g., 
energy cost) with respect to control setpoints (e.g., chilled water and air supply temperatures) 
and subject to constraints (e.g., comfort and equipment capacities). More specifically, model 
predictive control (MPC) involves minimization of an integrated cost (e.g., daily) and employs 
building and equipment models as key elements in enabling adaptive and predictive control in 
response to time varying inputs.  Generating models, constraints, and appropriate cost functions 



January 2013 

22 
 

for a new application can be time consuming and expensive and has been a limiting factor for 
widespread application of optimal control.  The primary goals of this subtask are to develop and 
demonstrate a process, tools and algorithms that can significantly reduce the development and 
commissioning time/cost to implement optimal supervisory control for retrofits in buildings.   
This approach involves automating generating models, cost functions, and constraints needed to 
minimize energy costs.  The goal is to provide algorithms that are scalable and that could be 
deployed across commercial buildings. 
 
During the BP2, this subtask is focusing on the following deliverables: 

1) Adaptive and optimal control algorithms that can adapt and optimize performance with 
changing environmental and building usage conditions. Model-predictive controls to 
compensate loads in a predictive fashion while respecting state and actuation constraints. 

2) Control-oriented models (i.e., reduced-order model and inverse (data-driven) model) 
which capture the relevant physics and dynamics of the building sub-systems and the 
indoor environment and are suitable for advanced supervisory and terminal control 
design. The models will be easily replicable and scalable to multiple building 
configurations and locations, reducing the effort required for control design and 
optimization. 

3) Supervisory level control algorithms to generate optimal set points for lower level 
controllers, accounting for outdoor and indoor disturbances. 
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2. Control Oriented Model Development 
2.1 Introduction 
Modeling accuracy is a key enabler for effective and robust controller performance. Compared to 
the process industry, where the effectiveness and benefits of MPC have been successfully 
demonstrated [1], models for building HVAC systems have larger uncertainties due to cost 
constraints that limit the number and quality of sensors that are available for model training or 
tuning. MPC utilizes dynamic building and HVAC equipment models and input forecasts to 
estimate future energy usage and employs optimization to determine control inputs that minimize 
an integrated cost function for a specified prediction horizon.  A dynamic model with reasonable 
prediction performance (e.g., accuracy and simulation speed) is crucial for a practical 
implementation of MPC. One modeling approach is to use whole-building energy simulation 
programs such as EnergyPlus, TRNSYS and ESP-r, etc. However, the computational and set up 
costs for these models are significant and they do not appear to be suitable for on-line 
implementation.  
 
According to ASHRAE [2], modeling approaches can be classified within two categories: 1) 
forward (classical) modeling, and 2) data-driven (inverse) modeling. Forward modeling approach 
typically starts from exploiting physics of the system. For example, a very detailed physics-based 
building envelope model could be built by inputting information for building geometry, physical 
parameters of each wall (internal/external surfaces) and windows, and their connectivity graphs.  
One of the drawbacks of this approach is that it would require a large number of parameters to be 
determined, which may not be easy to obtain from existing measurements in practice. Data-
driven (inverse) modeling approaches, on the other hand, typically start from processing 
measurement data from the system. However, some inverse modeling approaches utilize a 
physics-based model structure, e.g., thermal-network, where the data is mainly used to train the 
model parameters. The major advantage of the forward modeling approach is that it can be 
applied to systems in the design phase prior to construction [2]. On the other hand, a data-driven 
modeling approach is easier to apply for an existing system and is often more accurate in terms 
of predicting system responses compared to forward models [2]. 
 
In this section, the following modeling methods are presented: 

 Reduced order model 
 Couple reduced order indoor-air model 
 Inverse model 
 Data driven model based on system identification 

 
2.2 Reduced Order Model 
For the last two decades there has been a growing interest in applying Model-Based Predictive 
Control (MPC) for reducing energy use and costs for operation of buildings. The application of 
MPC to buildings could have high computational requirements depending on the number of 
control variables, the time horizon for the optimization, the discretization for control decisions 
and model solution, and the complexity of the models.  
 
Reducing model complexity and computational requirements, while retaining prediction 
accuracy, is the goal when considering reduced-order modeling. Many different model order 
reduction (MOR) methods have being developed in computational fluid dynamics, very large 
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scale integration and control. These include state aggregation methods, balanced realization 
approaches, singular perturbation methods and moment matching approximation based on the 
Krylov subspace method.  
 
Various approaches have been developed and applied for building envelope systems in order to 
cope with high dimensionality that results from a spatial discretization of the partial differential 
equations (PDE) that model heat conduction in walls. Gouda [3] categorized the MOR methods 
for building applications into three groups.  

 Polynomial reduction methods 
 Parameter estimation 
 State-space transformation–based techniques. 
 

In this section, we will restrict our attention to state-space based methods.  E. Palomo et al. [4] 
investigated several state transform methods for building applications and suggested a guide to 
select a reduction technique for thermal models. The authors also applied the reduced-order 
models (ROM) to investigate control strategies such as PID and optimal controllers [5]. In their 
approach, a reduced-order linear time invariant (LTI) model for a multi-zone building was 
developed from a detailed description of the wall dynamics based on a finite volume or finite 
difference method.  A full-order model is assembled for each wall and MOR is applied.  The 
procedure to generate a reduced-order model is described as “complete-assembled-reduced” or 
simply c-a-r according to Ménézo’s notations [6].  
 
C. Ménézo et al [6] proposed application of a state aggregation method to each wall and then 
assembly of all the reduced models with a zone air balance and surface boundary conditions to 
construct a lower order multi-zone model. Additional MOR can be applied to the assembled 
model.  In comparison to c-a-r, this approach can be described as “reduced-assembled (r-a) or 
reduced-assembled-reduced (r-a-r)”. In the study, comparisons of results for a single-zone case 
study were provided for the c-a, c-a-r, r-a and r-a-r approaches. 
 
S. Goyal and P. Barooah [7] also started from a simplified wall model for wall dynamics 
described as 3R2C (three resistances and two capacitances) in order to obtain a reduced-order 
zone model. A multi-zone is constructed from the simplified wall models and then a balanced 
truncation method is applied to further reduce the dimension. A model-order reduction method to 
treat nonlinearities appearing from water vapor balance equations was also presented. 
 
K. Deng et al. [8] proposed a method to reduce complicated thermal networks by aggregating a 
number of nodes into “super-nodes”. The proposed method is based on model reduction of 
Markov chains.  
 
Many approaches have been suggested for the building system, but the previous researches 
focused on the model reduction technique itself, thereby the comparisons of the reduced order 
model were restricted to their original models. However, to the building system simulation field, 
the most fundamental questions on the MOR method might be the applicability and reliability of 
the lower order model, not the model reduction technique itself. Unfortunately, none of them 
compared their ROMs to experimental data or reliable models which are validated to experiment, 
such as Energy plus [9] and TRNSYS [10], thereby left the essential questions of the usability of 
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the reduced order model. 
  
The previous case studies for reduced-order modeling were limited to a relatively small number 
of zones, e.g. four zones, and there were no comparisons of computational requirements with 
more traditional simulation models. These limited results lead to a question on the applicability 
of MOR methods to a commercial size of building.  
 
This section presents a general approach for generating a ROM from a detailed representation of 
the dynamics of commercial sized multi-zone buildings and provides comparisons of predictions 
and computational requirements with a commercial building simulation tool. The proposed 
method utilizes balanced truncation [11] for subsystem model reduction. 
 
A general and systematic methodology for converting the complex thermal network of a multi-
zone building into a linear time invariant model is developed in Section 2.2.1. In Section 2.2.2, 
we review balanced truncation and introduce the subsystem model reduction method with 
summaries of the advantages when it is applied to a building system. Case study results are 
presented for an existing 59-zone building in Section 2.2.3. In this section, the performance of 
the approach is also compared with a TRNSYS model in terms closed and open-loop responses, 
as well as computational requirements. 
 
2.2.1.  Mathematical Modeling 

 
State-Space Representation of a Thermal Building Model 
The key feature of our modeling approach is a hierarchical, modular treatment of a large number 
of temperature nodes in a multi-zone building envelope system. Following this multi-level 
approach, a systematic method for generating a LTI model for the complex thermal network of a 
multi-zone building is presented.  
 
The structure of the states is summarized as follows. 

i
jT = temperature at jth node in ith wall in a single zone 

jT


= set of all jth temperature nodes of walls in a single zone, i.e.  

ሬܶԦ௪ூ = set of all node temperatures of walls and windows in Ith zone, i.e. 

 

WT


= set of all temperatures nodes of walls in multiple zones, i.e. ሬܶԦ௪ ൌ ቂ൫ሬܶԦ௪ଵ൯
்
… ൫ሬܶԦ௪ே௭൯

்
ቃ
்
 

 
In this section, the term zone is used to represent a unit or module of the thermal network of a 
room. A multi-zone representation is a group of thermal network units. The state-space model of 
a building system starts from a module (network unit) and extends to constructing more complex 
multi-zone models. A detailed formulation is described in this section. Some of the important 
assumptions used to construct the network unit are: 

 The temperature of each surface or surface segment and of its cross section is uniform.  
 Each zone is well mixed. 
 Each wall emits or reflects diffusely and is gray and opaque. 
 Air is a nonparticipating media with respect to radiation. 
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 Heat transfer is one dimensional.  
 Conduction between each window and window frame is neglected (1-D assumption). 
 

The main approach to treating the complex thermal network for a multi-zone building is to 
linearize long-wave radiation exchange and group the states (temperatures) and fundamental 
equations in the form of a state-space representation to facilitate model-order reduction.  
 
Conduction through Walls 

 
Figure 2.2.1 Notation for conduction through walls. 

A finite volume formulation is used to describe the heat conduction through walls and is depicted 
in Figure 2.2.1.  For any jth node in a wall except the first and last nodes, an energy balance leads 
to  

1

1

| ( | | )

|

i
ji i i L i i L i R i i

j j j cd j j cd j cd j j

R i i i
cd j j g en j

d T
C w h T h h T

d t

h T q

 



  


    (2.2.1) 

where 
|

|
|

L i
jL i

cd j L i
j

k
h

w
  and  i

gen jq  is an energy source [W/m2] inside the jth finite control volume 

that belongs to the ith wall. 
By using the following matrix notation, 

,       

 

, 
 

equation (2.2.1) can be expressed in the following matrix form.  

         , 1 , , , 1( )j L L R R
j cd j j cd j cd j j cd j j j

dT
C H T H H T H q

dt
T   


            (2.2.2) 
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Note that jT


 is a group of all of the wall temperature nodes belonging to an individual zone. 
 
Heat Balance at Outside Surface 
For any ith outside wall (connected to the external ambient) belonging to an individual zone, the 
heat balance equation at the surface is  

  
,

1
1 1 1 1 1 2 1 1( ) | ( )

cv ex

i
i i i i i R i i i i i i

a cd SWR LWR

dT
C w h T T h T T q q

dt
      

    (2.2.3) 
where 1

iT represents the wall temperature of the first node which is set to be an outside surface of 

the wall.  
 
With the assumptions that the outside surface is gray and diffuse and the air is a non-
participating radiation media, net long wavelength interactions with the environment can be 
expressed as 
 

4 4 4 4
1 11 1( ) ( )i i i i i i i

LWR sky sky grd grdq F T T F T T     
 

 
Using a linear approximation of the long-wave heat exchange term gives 

1 1 2 11 1
1

1 1 , ,|( ) |
i

i i i i R i i R i i
cv ex cd ra

i i
d ex cd

dT
C w h h h T h T q

dt
      

     (2.2.4) 
where  

3 3
, 14 ( )i i i i

rad ex sky sky grd grdh F T F T 
, 

1

3 3
, 1 14 ( )i i i i i i i

cv ex a sky sky sky grd grd grd SWRq h T F T T F T T q    
 

1= 
2

sky

sky

T T
T



, 
1= 

2

grd

grd

T T
T



 
The mean temperatures for long-wave exchange between the surface and sky and surface and 
ground are assumed to be the same for all outside surfaces. 
 
Equation (2.2.4) can be generalized and written in compact matrix form as 

1
,1 ,1 , 1 ,1 2 1( )rad ex

R R
cd cv ex cd

dT
C H H H T H T q

dt
     

             (2.2.5) 

where  
3 3

1 , 1 1
( ) 4 ( )i i i i i i

i cv ex a sky sky sky grd grd grd SWR
q h T F T T F T T q    



 

 
Heat Balance at Inside Surface 
For the Ith zone and ith wall, the energy balance equation for the inside surface is  

, 1 ,( ) ( )|
i

i i i i i L i i in
n n n cv in z n cd n n net ra

i
n d

dT
C w h T T h T T q

dt
     

    (2.2.6) 
where ,

i
net radq  is net radiative flux out of the inside wall.  

 
The radiosity method is utilized to express the net flux under the assumption that the walls are 
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gray, diffuse and opaque. The same linearization method used in Equation (2.2.4) is employed 
leading to 

 
1

, [ ]n onet radq A B T h  
   

         (2.2.7) 
 
where,  

 -ij j
ij ij

j j

A F
 


 

 
34 ( )ij ij ijB F T   
 

A similar formulation for the treatment of long-wave interactions is shown in [12]. In equation 
(2.2.7), radiosity does not appear explicitly, which is convenient for building simulation. Since

 represents an external radiative source acting on the ith surface, the effects of internal sources 
and transmitted solar energy though windows are treated in a consistent manner. For any shaped 
room, the net radiative flux can be explicitly calculated as a function of surface temperatures if 
the view factors and the external radiative sources are known.  

By letting 1
,rad inH A B     and 1

onq A h
  , 

 

, 1 , , , ,( )Ln
n cd n n cd n rad in cv in n cv in z n

LdT
C H T H H H T h q

dt
T     

       
    (2.2.8) 

 
State-Space Representation of Thermal Network Module 
Gathering the system of equations that represent heat balance equations for external to internal 
wall elements, i.e. equations (2.2.2), (2.2.5) and (2.2.8),  
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A tri-diagonal block matrix is formed with parameters that characterize heat transfer due to 
conduction in the walls (from node number 2 to node number n-1) and radiative/convective heat 
transfer at the boundaries (first and last nodes only). The terms jq


, where j is from 2 to n-1, 

vanish if there are no heat flux sources inside the wall such as embedded radiant heating or 

i
oh
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cooling.  
 
Because a multi-zone representation is a group of thermal network units, it can be readily 
developed based on Equation (2.2.9). The coupling parameters between the units are derived 
from the heat conduction equation in the form  

=  +W W WW W ZWZ WC T H T H T q
     

          (2.2.10) 
where the coefficient matrices, ,  W WWC H   and WZH  have block diagonal forms, except for the 

coupling matrix, consisting of the coefficient matrices for each zone, ,w wwC H   and wzH . Each 

variable also represents the set of all individual variables in all zones. For example, WT


 is the set 

of all temperature nodes of walls in multi-zones, i.e.,  ሬܶԦ௪ ൌ ቂ൫ሬܶԦ௪ଵ൯
்
… ൫ሬܶԦ௪ே௭൯

்
ቃ
்
	   

 
State-Space Representation of Zone Air Balance 
To complete the state-space representation of a multi-zone building, the dynamics of zone air 
temperatures need to be included. Heat fluxes to an air control volume within a zone can be 
categorized as follows.  

I
ventQ =  ventilation 

inf
IQ =  infiltration  
I
cplQ =  air mixing among rooms 
I
SQ =  convective internal source due to computer, human action and so on,  
I
CVQ = convective heat exchange between a zone air and its surrounding walls 

 
The balance equation for the Ith zone is 

I
I I I I I I Iz

V cv cpl inf S vent

T
C V Q Q Q Q Q

t
 

    


           (2.2.11) 

A linear state-space form was formulated based on Equation (2.2.11) under the assumption 
that the inter-zone mixing and infiltration terms are negligible and is expressed as 

 

Z Z ZW W ZZ z S ventC T H T H T Q Q  
     

       (2.2.12) 

ZC  is a diagonal matrix where the Ith element is the Ith zone air capacity, i.e. I I I
VC V . The terms 

ZT


, SQ


 and ventQ


 are vectors where the Ith element is I
zT , I

SQ  or I
ventQ .  WT


 is defined in Equation 

(2.2.10). ZWH  and ZZH  are block diagonal matrixes where the Ith block represents the convective 

heat exchange between the Ith zone air and its surrounding walls.  
 
Final State-Space Representation of Thermal Network 
Based on Equations of (2.2.10) and (2.2.12), the state-space representation of the thermal 
network can be written as   
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0

0

WW WW WZW W

ZW ZZ Z ZZZ

qT H HC T

H HC T QT

       
         
         

    
         (2.2.13) 

The matrices C and H  represent the thermal capacitance and heat transfer coefficients of all 
wall nodes and zone nodes, respectively. The subscripts W and Z refer to wall and zone.  
 
When constructing the state-space representation in the form of x Ax Bu   from Equation 
(2.2.13), the size of the B matrix will be the same as the size of a. However, the size of matrix B 
can be dramatically reduced by introducing a simple transformation denoted byT  in Equation 
(2.2.14), since the heat sources inside the wall are zero except for the case of radiant floor 
heating and cooling. 
 
The final standard form is 

 

              

1 1
0 0

0 0
W WW WZW W W

ZW ZZ ZZZ

W

Z

Z

T H HC T C
T u

H HC T CT

T
y C

T

         
         
        



 
 
 

        


  

    (2.2.14) 

 
2.2.2. Model Reduction Method 
 
Balanced Truncation Method 
The purpose of model order reduction (MOR) is to derive a lower order model from a high order 
system preserving the dominant dynamics of the original high order model. The problem 
definition of MOR for a linear time invariant system is to construct lower order matrices for 

, , ,r r r rA B C D , Equation (2.2.15), from the original system of Equation (2.2.16). 

 
( ) ( ) ( )

:
( ) ( ) ( )

r r r r
r

r r r r

G
y t C x t

x t A x t u

u t

B t

D


  






                 (2.2.15) 

( ) ( ) ( )
:

( ) ( ) ( )oG
y t Cx t

x t A

D

x t Bu

u t

t
 





          (2.2.16) 

 
where the state ݔሺݐሻ ∈ 	࣬௡, ݔ௥ሺݐሻ ∈ ࣬௥ and r n .  
Note that we want to reduce the state order from ݊ to ݎ while keeping the response error 
|| ||o rG G  small. ( || || is the H-infinity norm and oG and rG are transfer functions of the original 

and reduced-order systems, respectively.) 
Several model order reduction methods are available, but one representative method employed in 
the current study is the balanced truncation technique originally proposed by B.C. Moore [13].  
 
The main idea of the balanced truncation approach is to truncate states which make little 
contribution to input and output behavior [14]. The importance of the states can be measured by 
the singular values of the Hankel operator defined by 



January 2013 

31 
 

)(

0
)(( ) ( )A tv t Ce Bv d  

            (2.2.17) 
In other words, if one can find the Hankel singular values, denoted by  , one can judge the 
contribution of each of the states. 
 
The first step of the state-space transformation technique is to find a transformation which 
balances the observability and controllability Gramians,  defined by 

†

†

0

†

0

†

A A

A

c

o
A

W e BB e d

W e C Ce d

 

 














  

where the superscript † denotes conjugate transpose. 
 
After balancing the Gramians, one can obtain the Hankel singular value via the well-known 
formula: c oW W   .  

 
The second step is to construct and to perform a Galerkin projection based on the singular values 
of the balanced Gramians [15]. Important features of the approach are the reduced-order model 
maintains most of the original model properties such as dynamic behavior, observability, 
controllability and stability [16], thereby providing a more reliable model. Furthermore the 
truncation of error, || ||o rG G  , is bounded by twice the sum of the truncated singular values.  

 
In this study, the balanced truncation method was adopted for constructing a reduced-order 
model based on the system of Equation (2.2.14). An algorithm to compute the state-space 
balancing transformation is presented by A.J. Laubi [17].  

 
Subsystem Model Reduction by Balanced Truncation 
A natural treatment for considering various numbers of states in the multi-zone building is to 
start from simplified wall dynamics, such as a 3R2C representation, and to assemble them (r-a or 
r-a-r). However these “bottom-up” type methods are questionable because the elementary lower 
order model pre-programs a certain loss in dynamic behavior that may be important when 
considering a large coupled system with many walls and zones. 
 
Needless to say, it is more systematic and reliable to construct a ROM from the original full 
order model rather than aggregating approximate models. However the main disadvantage to this 
approach is the fact that the computational time increases significantly as the number of states 
increase. For example, computation complexity applying the Lyapunov balancing method 
increases with the 3rd power of the dimension of state space [18]. The application of the Iterative 
Rational Krylov Algorithm is included in the Appendix 2.2. 
 
Instead of reducing the entire coupled system or reducing each wall separately, it makes sense to 
reduce the thermal network unit representing each zone while taking into account its 
interconnection with other units, and then to reduce the assembled entire lower model (c-a-r-a-r). 
The procedure is performed on the framework of subsystem model reduction [11] as follows. 
 
A subsystem (thermal network unit for one zone) representation of a coupled LTI system can 
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have the following general form. 
( ) A x ( ) B u ( )

y ) C ( )

x

( x

 



 j j j j j

j j j

t t t

t t
        (2.2.18) 

where {1, 2, .., }j k ሻݐ௝ሺݔ, ∈ ࣬
௡ೕ, ݑ௝ሺݐሻ ∈ ࣬

௠ೕ, ݕ௝ሺݐሻ ∈ ࣬
௣ೕ and the matrices of subsystems with 

appropriate dimensions. 
 
The “coupling effect” is characterized by the relations 

1

1
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



j i j

k

ji
i

i
i

i

k

t t u t

y t t
. 

where ݑሺݐሻ ∈ ࣬௠ and ݕሺݐሻ ∈ ࣬௣ represents exogenous inputs and outputs of the entire system 
and the matrix , 1[K ]k

i jji   defines the interactions between the subsystems. 

 
The entire LTI system representation can be readily obtained and is shown below. 

A BKC 

BH

RC

A

B

C

 





  
 


         (2.2.19) 

where 
ሚܣ ൌ diagሺܣଵ, … , ௞ሻܣ ∈ ࣬௡,௡ 
෨ܤ ൌ diagሺܤଵ, … , ௞ሻܤ ∈ ࣬௡,௠భା⋯ା௠ೖ 
ሚܥ ൌ diagሺܥଵ, … , ௞ሻܥ ∈ ࣬௣భା⋯ା௣ೖ,௡ 

෩ܭ ൌ ௝௜൧௜,௝ୀଵܭൣ
௞

∈ ࣬௠భା⋯ା௠ೖ,௣భା⋯ା௣ೖ 

෩ܪ ൌ ሾܪଵ
், … , ௞ܪ

்ሿ் ∈ ࣬௠భା⋯ା௠ೖ,௠ 
෨ܴ ൌ ሾܴଵ, … , ܴ௞ሿ ∈ ࣬௣,௣భା⋯ା௣ೖ 

1  kn n n . 
 
When balanced truncation method is applied to each subsystem of Equation (2.2.18), the reduced 
model for the coupled system has the same form of Equation (2.2.19).  Thus, the original 
subsystems are replaced with the reduced ones but with preservation of the structure of the 
interconnections. 
 
The main advantage of following this approach to building envelope system modeling is that the 
truncation error for the entire ROM can be bounded and stability is guaranteed, because each 
thermal network unit is asymptotically stable. More rigorous discussion of the approach is 
provided in [11].  
 
The theoretical bound of the approximation error gives a more reliable reduced-order model than 
the one constructed by r-a-r approaches. Also, the accumulation of truncated dynamic properties 
is reduced. Furthermore computational time to construct a ROM is reduced compared to the c-a-r 
approach. With these advantages, we move our attention to the capability and the performance 
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tests of the proposed method.  
 
2.2.3. Case Study Results And Discussions 

 
Building description and case study results 
For testing the validity of the detailed (full-order) model representation, both steady and dynamic 
responses were evaluated for various cases. The direct stiffness method (FEM) with the an exact 
radiosity solution for long-wave radiation was used to check the steady-state behavior. TRNSYS 
Version 17 was used to compare dynamic response. A case study for the performance test of the 
full-order and reduced-order models for a single zone is provided in [19].  
 
In BP2, a case study for the Building 101 located at the Philadelphia Navy Yard is presented to 
demonstrate the accuracy and computational requirements of reduced-order modeling as 
compared to the TRNSYS model. Figure 2.2.2 shows an external view of the building.  Some 
characteristics uses in the modeling include: 

 55,000 square feet of total floor area 
 3 occupied floors with a basement and attic spaces and a total of 59 zones  
 18 different types of layers used for wall construction that primarily consist of concrete, 

insulation board, plaster board, and brick 
 6 different types of walls various combinations of the layer types 
 ground boundary temperature is modeled as a time varying signal  
 TMY2 weather data for Philadelphia  
 Values of 17.77[W/m2-K] and 3.05[W/m2-K] were used for convective heat transfer 

coefficients at the outside and inside surfaces, respectively.  

 
Figure 2.2.2 External view of Building 101 (3D Google Map) 
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Figure 2.2.3 Zoning of 2nd floor of Building 101 
 
The ground and attic were represented using 11 and 5 zones, respectively.  The 1st, 2nd, and 3rd 
floors used the zoning shown in Figure 2.2.3.  
 
In order to construct a linear time invariant system, average values of effective sky temperature, 
ground surface temperature and mean external wall temperatures are needed for linearization of 
the radiation heat transfer coefficient and are determined prior to simulation. The average ground 
temperature was taken as the average annual air temperature.  The average sky and air 
temperature were determined from the TMY2 weather file, whereas the mean external wall 
temperature was set to 15ºC.  
 
Note that the computational time for solution of differential (difference) equations is highly 
dependent on the differential (difference) equation solver algorithm. Therefore performance 
judgments with respect to simulation time relative to TRNSYS are difficult. One of the most 
important differences between the state-space representation and TRNSYS is that the former is 
continuous, but the latter is represented using discrete equations.  A continuous representation 
lends itself to variable time step solution algorithms, whereas the TRNSYS representation 
utilizes fixed time steps.   
 
In order to provide reasonable computational comparisons between the ROM and TRNSYS, 
first-order hold discretization was performed for the ROM with the same time step used in 
TRNSYS. Table 2.2.1 and Table 2.2.2 show comparisons of computational time and errors for 
open-loop variation of zone temperatures for one year for TRNSYS and ROM with a 3.10 GHz 
(32 bit) computer. The time required for preprocessing in both models was not counted in the 
Table 2.2.1.  
 
Note that the comparisons are for an entire year. Although there are some deviations at the 
ground floor and the attic, the ROM provides comparable accuracy overall with 0.74 ºC 
maximum root mean square (RMS) differences. Compared to TRNSYS, the computation was 
reduced by about a factor of 100. As a result, the ROM is more readily utilized in optimization, 
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optimal control or any high level control than existing modeling approaches.  
 
The computational time required to generate the reduced-order model is summarized in Table 
2.2.3. The total amount of system memory reserved for the MATLAB process was 631 MB. The 
full-order model had a total of 3664 nodes for the 59 zones. The computational time to generate 
the entire system matrix was 5.5 sec and the memory required to save the system matrix was 
243.4 KB utilizing sparsity of the matrix. The computational time for subsystem model reduction 
and the assembly process was 9 sec. The number of states was reduced by about a factor 2 from 
the full-order model for the subsystem model reduction. The computational time for the 
assembled system MOR was more significant (65.1 sec), but the number of states was reduced 
by about a factor of 25.  In addition to controls applications, the computational savings 
demonstrated in Table 2.2.1 indicate that this approach may be useful for general building 
simulation, particularly when considering parametric studies and optimization for design. 

 
Table 2.2.1 Computational time comparison for ROM and TRNSYS with one-year simulation 

Time step 
[min] 

TRNSYS 
[sec] 

ROM 
[sec] 

10 876.9 8.7 

30 482.6 4.7 

60 248.5 3.0 
 

Table 2.2.1 Mean error (ºC) and root mean square error (ºC) comparison for ROM and TRNSYS 
with one-year simulation for Building 101 

 
Ground 
 Floor 

First  
Floor 

Second  
Floor 

Third  
Floor 

Attic 

# ERR RMS ERR RMS ERR RMS ERR RMS ERR RMS 

1 0.19 0.29 -0.07 0.22 -0.18 0.32 -0.21 0.39 -0.07 0.62 

2 0.44 0.58 0.04 0.34 -0.03 0.31 0.05 0.32 0.22 0.70 

3 0.30 0.37 0.10 0.29 0.03 0.29 0.06 0.32 0.52 0.66 

4 0.00 0.07 0.02 0.17 0.07 0.32 0.12 0.36 -0.23 0.51 

5 0.28 0.36 0.13 0.28 0.06 0.27 0.08 0.31 -0.20 0.67 

6 0.28 0.41 0.05 0.31 0.13 0.28 0.22 0.37 - - 

7 0.04 0.35 0.06 0.22 0.01 0.26 0.02 0.35 - - 

8 0.03 0.13 -0.25 0.39 -0.40 0.51 -0.34 0.58 - - 

9 0.31 0.41 0.19 0.31 0.14 0.29 0.11 0.31 - - 

10 0.62 0.74 0.04 0.22 0.07 0.59 0.12 0.59 - - 

11 0.27 0.45 0.10 0.34 0.02 0.50 0.06 0.51 - - 

12 - - 0.29 0.48 0.41 0.55 0.25 0.39 - - 

13 - - -0.06 0.25 -0.23 0.39 -0.33 0.52 - - 

14 - - - - 0.26 0.60 0.11 0.48 - - 

15 - - - - 0.27 0.58 0.09 0.51 - - 
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N

r TRN

k

oERR C T k T k N   and 
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N

k

N

oRMS C T k T k N


  . 

 
Table 2.2.2 Computational time for generating ROM for 59 zone building envelope system 

 
System 

Matrix [sec] 
Subsystem MOR & 

Assembly [sec] 
Assembled System 

MOR [sec] 

Computational  
time 

5.5 9 65.1 

Number of states 3664 1954 81 
 
Sample model output comparisons between TRNSYS and the reduced-order model (ROM) for 
floating zone temperature, driven by weather, for several days are shown in Figure 2.2.4 and 
Figure 2.2.5.  The 1st zone on the 2nd floor and the 8th zone on the 3rd floor are chosen as a 
“normal” and “worst” case, respectively. The corresponding zone locations can be checked in 
Figure 2.2.3. The zones in the attic and the ground floors, which are not occupied, were excluded 
in the selection of “worst” zone. The black solid line (TTRN), blue dashed line (Tr) represents 
zone air temperature profiles generated by TRNSYS and reduced-order models, respectively. 

 
Figure 2.2.4 Open-loop response model comparisons between TRNSYS and reduced-order 

models (8th zone on the 3rd floor, May) 
 

 
Figure 2.2.5 Open-loop response model comparisons between TRNSYS and reduced-order 

models (1st zone on the 2nd floor, May) 
 
In order to test closed-loop response of the ROM, the responses under a dual setpoint thermostat 
controller with saturation points were imposed and the control sequence is shown in Figure 2.2.6. 
Heating and cooling zone air temperature setpoints of 23ºC and 27 ºC, respectively, where 
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utilized.  In this test, a 6 kW convective gain was assigned to each zone during the occupied 
period of 7 am to 6 pm. Example closed loop responses for the TRNSYS and reduced-order 
models are shown in Figure 2.2.6 and Figure 2.2.7 for the same zones considered in Figures 2.2.4 
and 2.2.5.  
 
The computational requirements with 5 minute time steps for a one-year simulation were 3966.2 
sec for TRNSYS and 91.4 sec for the ROM model. The mean and RMS differences for the worst 
case were -0.071 and 0.235ºC, respectively. For all of the zones, the mean and RMS differences  
were 0.0587ºC and 0.1724 ºC.  

  
Figure 2.2.6 Closed-loop response model comparisons between TRNSYS and reduced-order 

models (8th zone on the 3rd floor, May) 
 

 
Figure 2.2.7 Closed-loop response model comparisons between TRNSYS and reduced-order 

models (1st zone on the 2nd floor, May) 
 
The subsystem model reduction method allowed a practical solution to the Lyapunov balance 
equation for 59 zones in a building initially have 3664 states. Compared to the full-order model, 
the ROM resulted in about a factor of 50 reduction in state variables (from around 3664 to 81 
states) for this specific case study. Compared to TRNSYS, the computation was reduced by 
about a factor of 100. As a result, the ROM is more readily utilized in optimization, optimal 
control or any high level control than existing modeling approaches.   
 
2.2.4. Conclusions and future work 
Modeling and model order reduction methods to handle commercial size multi-zone buildings 
were presented. A mathematical representation to describe the thermal network of a building was 
formulated and applied to generate a reliable reduced-order model using a subspace model 
reduction technique with balanced truncation. This method is reliable in the sense that the 
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approximation provides theoretical error bounds.  
 
A case study was carried out for a 59-zone building and results were compared with predictions 
from a commercially available building energy simulation tool. The lower order model gave 
results that were close to those predicted by TRNSYS with about one-hundredth the 
computational requirements. The model has been successfully applied to a Model Predictive 
Control case study for a single zone building system by D.Kim and J.E. Braun [20].  
 
The physics-based, reduced-order building model lends itself to application of control theory to 
investigate system properties and to evaluate control performance with the help of control 
toolkits such as Matlab/Simulink. For example, the system time constant, DC gain under various 
control inputs, frequency response, stability, controllability and observability can easily be 
investigated for design of controllers for building systems.  
 
The modeling approach is general for any building geometry (i.e., not restricted to rectangular 
shapes of walls) because it was developed using the radiosity method that incorporates view 
factors that can be determined for any geometry. This aspect allows individual wall elements to 
be divided into separate smaller elements to facilitate coupling to a CFD model for the indoor 
environment. This spatial discretization of walls is appropriate when the surface temperatures 
vary significantly due to solar or other non-uniform inputs. A case study for coupling a reduced-
order CFD indoor air model with the reduced-order building envelope has been carried out [21].  
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2.2.6. Nomenclature 

ijA = (i,j) components of a matrix A  
TA = transpose of a matrix A  
I

VC = Ith zone air thermal capacity(constant volume specific heat) [J/kg-K] 

,cv inh = convective heat transfer coefficient at an internal wall [W/m2K] 

,cv exh =convective heat transfer coefficient at the outside surface of a wall[W/m2K] 
i
oh = external radiative source term acting on ith surface [W/m2K] 

I = identity matrix 
|L i

jk =  thermal conductivity at left surface of the jth node in ith wall 

nnod = number of nodes in a wall  
Nz  = number of zones (or rooms) 
Nw = number of walls in a zone (or a room) 

LWRq = net long wavelength radiation exchange with environment [W/m2] 

SWRq = short wavelength solar irradiation [W/m2] 

genq
= energy source term [W/m2] 

( )iq


= ith component of a vector q


 

,net radq = net radiative heat flux out of an internal surface [W/m2] 

Q  = heat flow rate [W] 

T = mean temperature [K] 
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WT


= set of all temperatures nodes of walls in multiple zones,   

ሬܶԦ
௝
ூ= set of all node temperatures of walls and windows in Ith zone,   

jT


= set of all jth temperature nodes of walls in a single zone,  

i
jT = temperature at jth node in ith wall  

ZT


= set of all zone air temperatures nodes in multiple zones 
I

zT = Ith zone air temperature [K] 
IV =  Ith zone air volume [m3] 
i
jw = width of control volume of jth node in ith wall [m] 

|L i
jw = distance from the "j-1"th node to the jth node in ith wall [m] 

ij = Kronecker delta 
 = Hankel singular value 

i
j = density at jth node in ith wall 
I = Ith zone air density [kg/m3] 

 = Hankel operator 

cW = Controllability gramian 

oW = Observability gramian 

|| || = Hardy infinity norm (or H  norm) 
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2.3 Coupled Indoor- Air Model  
Many advanced HVAC components and systems, such as chilled beams and displacement 
ventilation, rely on vertical temperature gradients for effective operation. Moreover, accurate 
assessment of environmental-quality must be based on conditions in appropriate occupied zones 
and not on large-scale averages. In particular, large comfort variations may exist in spaces that 
have relatively large aspect ratios in combination with large south facing windows.  Accordingly, 
it is appropriate to consider indoor environment models that accurately predict spatially varying 
comfort conditions. 
 
In this section we develop a procedure for coupling a building envelope model to a CFD-based 
model for the indoor air environment. The formulation retains spatially varying features such as 
water-vapor content and enables calculation of comfort metrics at various occupied locations. 
 
2.3.1 Introduction 
Whereas energy-efficiency in buildings is enhanced by improved components such as low-
emissivity glass, high-resistance insulation and improved-efficiency compressors, there is 
evidence that significant energy savings requires a more coordinated control approach. With 
control-design as an objective, we seek mathematical models of the building system that capture 
the important physics but that are computationally tractable. 
In the present study we examine coupling between the building envelope and the indoor air. To 
this end it is useful to consider the coupled system as the cascade shown in Figure 2.3.1. 

 
Figure 2.3.1 Cascaded Building-Envelope and Indoor-Air Blocks 

 
In this view the building envelope is driven by external convective and radiative loads, which 
result in a distribution of interior surface temperatures. These surface temperatures are inputs for 
the indoor-air model (along with internal and HVAC loads); among the outputs of the indoor-air 
model are heat loads on the bounding surfaces. In section 2.3.2 we discuss a building envelope 
model that incorporates conductive and radiative heat transfer among its components. In section 
2.3.3 we briefly discuss a standard model for a single, well-mixed zone and then describe our 
model driven by data from CFD simulations. Our model is based on the Purdue Living 
Laboratory #3, a facility being designed and constructed at Purdue University. Some details of 
the facility are provided in section 2.3.4 along with a case study of the closed-loop system 
response. 
 
2.3.2 Building Envelope Modeling 
A reduced-order building envelope model was formulated based on procedures described in 
section 2.2. A finite-volume formulation is used to describe the heat conduction through walls. 
On the external walls an energy balance is applied considering convective heat, solar radiation 
and long wavelength interactions. The radiosity method is utilized to express the net flux under 
the assumption that the walls are grey, diffuse and opaque. The long-wave interaction terms were 
linearized and fixed convective heat transfer coefficients were assumed to construct a linear time 
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invariant model (LTI) for the building thermal network. The final form of the state-space 
building envelope system is: 
 

( )( ) ( ) ( )

( ) ( )
u wu t B w tx t Ax

C

B

y

t

t x t





 
       (2.3.1) 

 
where the input (u) represents the convective heat flux between walls and the zone air, and the 
input (w) represents several exogenous terms, including the heat flow due to solar radiation, 
long-wave interaction between sky/ground and exterior walls. The output (y) is chosen to be the 
inside wall temperatures. 
 
The main features of this work are: 

 The modeling approach is general for any shaped building (i.e. not restricted to 
rectangular shaped walls) because it is developed using the radiosity method that 
incorporates view factors that can be determined for any geometry. 

 Individual wall elements can be divided into sub-elements to facilitate coupling to a CFD 
model for the indoor environment. This is appropriate when surface temperatures along a 
wall vary significantly due to solar or other non-uniform inputs. 

 The system of equations is continuous in time and is not restricted to a fixed time step. 
 
Variable time-step algorithms can be employed, which is helpful in handling different time scale 
problems that are inherent for building systems. 
 
Based on the compact state-space representation (2.3.1) various model reduction techniques can 
be readily utilized to construct a reduced-order building model. A balanced truncation method is 
applied to the representation to generate a reduced-order model. The reduced-order model 
preserves significant input/output properties of the original system. 
 
2.3.3 Indoor-air Model 

 
The Standard Model 
Energy exchange between a bounding surface and the adjacent indoor-air is typically modeled in 
terms of a convective film coefficient as 
 

(( )) ( )( )wall zonet Tq t h T t                  (2.3.2) 

 
where q(t) is the instantaneous flux (W/m2), and h is a film coefficient. The latter may be based 
on experimental results and depends on surface finish and orientation. Evolution of the zone 
temperature (Tz) is commonly modeled as 
 

1

( )
( ) ( )

m

j z
j

zdT t
C q t S t

dt 

         (2.3.3) 

where C is the thermal capacity of the well-mixed air (J/K), there are mwall segments, and ( )zS t
represents source terms in the zone. 



January 2013 

43 
 

 
If we identify system inputs (u ) with the segment temperatures ( iT ), and the outputs ( y ) with 

the segment heat fluxes ( jq ), then the standard system (2.3.2, 2.3.3) is an LTI system and in the 

usual first-order system form ( , , ,A B C D ) we can identify 

1

m

k
k

h
A

C






(a scalar), 
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h
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h
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 (2.3.4) 

 

Note that (2.3.4) does not account for the (m+1)th input ( zS ). 

The Standard Model transfer function from the inputs (segment temperatures (T )) to the outputs 
(the segment loads (Q)) is given by  

(
( )

)
T

std

s k

CC
H

C
s D

h




 
      (2.3.5) 

where the arrays ,C D depend on the wall-segment convective parameters ih  as given in display 

(2.3.4). 
Note that the transfer function stdH is not strictly proper ( 0D ). 
 
CFD-Based Model 
Our indoor-air model is realized as an LTI system that approximates specified input-output 
behaviors observed in computational fluid dynamics (CFD) simulations. A grid for our CFD 
(Fluent) simulation is shown in Figure 2.3.2 (left). The yellow zones depict (24) locations for 
student work areas; their numbering is shown on the right. Volumetric source terms are specified 
in the odd-labeled zones to emulate generation of water-vapor, carbon-dioxide and energy in 
these zones. In addition, (volume-averaged) human comfort metrics are read from all zones. The 
brown/green `cloud' structures support (8) inlet diffusers, and a single air-return is located on the 
back (North) wall. 
 
The bounding surfaces for the VAV-room were decomposed into 19 sections as shown in Figure 
2.3.3. The building envelope model was coupled to a Standard Model for the indoor-air and 
subjected to fixed loads. The resulting steady surface temperatures were enforced as Dirichlet 
boundary conditions and the Fluent simulation was run to a nominal steady-state. Some features 
of the resulting temperature/velocity fields are shown in Figure 2.3.4. In the right view (a mid-
room slice) it can be seen that near the west wall (left) and the east wall (right) the flow is 
vertically upward. With a steady flow solution in hand we then subjected the CFD model to a 
step-like change in each of the surface temperature (+10oC). Responses of the west wall fluxes to 
a change in the temperature on the middle section of the west wall are shown in Figure 2.3.5. 
Note that the initial response on the middle section (west 2) is a rapid increase; this is due to the 
direct coupling term ( )whT t (see equation 2.3.2). As the local air temperature increases, the flux 

value relaxes somewhat. In contrast, the response of the flux on the upper section (west 3) 
displays a significant decrease as the heated air rises. The effect on the lower wall flux (not 
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shown) is much smaller. 
 

 
Figure 2.3.2 CFD Grid and Occupied Zones for the Purdue VAV Room 

 

 
 

Figure 2.3.3 Interior Surfaces for the Purdue VAV Room 
 

 

 
Figure 2.3.4 Volume (left) and Y -plane (right) of Steady CFD Solution 
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Figure 2.3.5 Flux responses on west wall segments due to T on west 2 

 
In addition to the (19) surface temperatures we subjected the CFD model to perturbations in the 
supply air mass-rate and temperature, and to a change in occupancy load(s). In addition to the 
(19) required surface fluxes, we recorded responses in return air temperature, water-vapor and 
CO2 levels and to environmental quality metrics in various occupied zones (CO2, water-vapor, 
temperature and mean velocity). In all 40 output quantities were recorded.  
 
Fitting the Data 
For each input ( ju ) we hypothesize an LTI model of the form 

1
( ) ( ) ( )j j j

j

x xt t u t


       (2.3.6) 

( ) ( ) ( )j j j
j jy t C x t D u t      (2.3.7) 

where jx  is a scalar state, and the column matrices ܥ௝,  ௝ܴ߳ସ଴. Based on the Standard Modelܦ

(2.3.2) we have j
j jD h , the film coefficient for thj  surface. This value is extracted from the 

nominal steady CFD solution. 
 
The building envelope model exhibits more than ten eigenvalues (time constants) that are slower 
than 800 seconds. As seen in Figure 2.3.5 the indoor air time constants are typically much faster. 
(Indoor air time constants for perturbations in the supply air or the occupant loads are of the 
order of 800 seconds.) For this reason we insist that the asymptotic response of the model exactly 
match the data. For a unit-step input this implies that 

j j
j SS

j

y D
C





 

Thus, under the constraint that the steady-state output of the model exactly match the data, we 
have a single free parameter ( j ). This single parameter is found as a solution of a least-squares 

minimization problem; 

			ሺ߬ሻఛܬ
௠௜௡ ≜෍‖ݕ௠௢ௗ௘௟ሺݐ௞; ߬ሻ െ ௞ሻ‖ଶݐௗ௔௧௔ሺݕ

௞

 

This minimization was done using Matlab's fminsearch procedure. Some results are shown in 
Figure 2.3.5, where the red circles represent model responses. 
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2.3.4 The Coupled Model: A Case Study 

 
 
 

   
Figure 2.3.6 Simulink diagram, occupancy schedule and feedback control sequence used in the 

study 
 
We consider a case study based on the Purdue Living Lab 3.  A Simulink diagram of the coupled 
envelope/indoor-air system is shown in the top of Figure 2.3.6. Some parameters employed in 
the modeling include:   

 The size of the building: 32 ft for width and depth and 14.5 ft height 
 The materials for wall construction consist of concrete, insulation board, stucco, gypsum 

board, and double glazed windows.  
 The east wall and floor are adjacent to other rooms that are assumed to be at a fixed air 

temperature of 22oC.  
 TMY2 weather data in Indianapolis for the summer season (July) was used. 
 A constant value of 17.77 W/m2-K was used for the convective heat transfer coefficient 

at the outside surface of walls and windows. For the well-mixed case, a coefficient of 
3.05 W/m2-K was used for inside surfaces.  

 Sensible energy gains for each occupant were: 65 W for activity level (seated/writing), 
230 W for office equipment (computer/monitor), and 32 W for lighting. The lighting 
gains were assumed to be 40% convective and 60% radiative, whereas the other internal 
gains were assumed to be all convective. In addition, each occupant was assumed to 
generate 18 mg/s of moisture gain as a latent load and 0.25 L/min of CO2 production. The 
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left-hand bottom of Figure 2.3.6 shows the occupancy schedule for simulation case study 
with full occupancy corresponding to gains associated with 24 people. 

 A proportional controller is assumed to manipulate the supply air mass flow rate and its 
temperature as illustrated in Figure 2.3.6. Both quantities can become saturated due to 
capacity limitations for the air-handling unit (AHU). The bounds are 1 kg/s for maximum 
supply air flow rate and 11oC for minimum supply temperature. In the feedback control 
sequence shown in Figure 2.3.6 the x-axis represents the deviation of zone air 
temperature from a setpoint (22oC in this case study) and supm and supT represent discharge 

air mass flow rate and temperature, respectively.  
 
The predicted mean vote (PMV) is a comfort level metric that incorporates many different indoor 
environmental parameters. Fanger (1972) developed a PMV model that uses six input variables: 
zone air temperature, relative humidity, relative air velocity, mean radiant temperature, 
activitylevel, and insulation value of the clothing. PMV values range from -3 (cold), to +3 (hot) 
with zero as the desirable value. Fanger also related the percent of people dissatisfied (PPD) to 
PMV.  
 
The PMV-PPD model is widely used and accepted for design and field assessment of comfort 
conditions. In calculating PMV within this study: 1) a value 0.5 clo was used for 
clothing/ensemble insulation which is appropriate for summer dress with trousers and a short-
sleeved shirt; 2) a metabolic rate of 1 Met (58.2 W/m2) was assumed which corresponds to the 
energy produced by a seated person at rest; and 3) the mean radiant temperature was calculated 
as 

1

4 4
N

i
r i p iTT F 



 
 

where rT is mean radiant temperature, iT  is the temperature of surface i , and p iF  is the view 

factor from a person to surface i . The thermodynamic data used in the PMV calculation are 
averages over some appropriate zone. When using a well-mixed air model, one commonly has a 
single value - the room/zone average. The CFD-based model provides additional local 
information: assigned numbers of local zones are indicated in Figure 2.3.2. Initially, the feedback 
temperature sensor (thermostat) was assumed to measure the room-averaged temperature in 
order to compare the well-mixed model to the CFD coupled model. Figure 2.3.7 shows time 
histories of responses to external temperature, solar load and occupancy for one day in July. The 
room-averaged temperature and heat extraction-rate for the well-mixed model and for the CFD-
coupled model are in reasonable agreement. The variation in the average room temperature is 
due to the use of a proportional controller, such that higher cooling loads lead to higher zone 
temperatures. The fact that the average temperatures and extraction rates are similar for the well-
mixed and CFD-coupled models would seem to imply that a well-mixed model is a reasonable 
approach for determining the zone loads. However, it is not possible to use the average room 
temperature for feedback control. Furthermore, the well-mixed model does not provide any 
information about spatial variations in comfort conditions. 
 
In fact, Figure 2.3.8 shows that there are significant spatial and time variations in environmental 
conditions within the space on this July day. Figure 2.3.8 displays profiles of local temperature, 
humidity ratio, velocity magnitude and mean radiant temperature for the well-mixed room model 
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and three locations in the room for the CFD-coupled model: 1) the average of the five occupied 
zones nearest the south window (zones 1, 5, 10, 15, and 20 in Figure 2.3.2) labeled as oz 15 in 
Figure 2.3.8, 2) the local occupied zone 2 which is on the west end of the second row in Figure 
2.3.2 and 2.3.3) the local occupied zone 18 which is near the back of the room away from the 
windows. The zones nearest the window have significantly higher air and mean radiant 
temperatures due to solar gains. In addition to having lower gains, zone 18 also has higher air 
velocities because of closer proximity to an air diffuser; both factors leading to significantly 
lower air temperatures. The well-mixed model results in environmental indices that are within 
the middle of the values determined for the CFD-coupled model. However, this is because the 
average room temperature was used for feedback control for the coupled model which would not 
be implemented in practice.  
 
Figure 2.3.9 shows results for the same day with a thermostat that uses the average of the zones 
nearest the south windows (zones 1, 5, 10, 15, and 20 in Figure 2.3.2). Note that by sensing this 
warmer zone temperature, the peak temperatures in all of the other local zones are diminished by 
2 to 3 oC compared to control based on room average temperature. Furthermore, since the 
controller manipulates supply air mass flow rate and its temperatures based on the (warmer) zone 
conditions, the temperatures of all zones except for the zones near the window are much lower 
than that for well-mixed model. This leads to an increased heat extraction rate for the CFD-
coupled model compared to the well-mixed model as shown in Figure 2.3.10. Figure 2.3.11 
demonstrates the importance of thermostat location on the overall comfort as represented using 
PMV. The right plot shows PMV for the sensor located near the south window that was used for 
the results presented in Figure 2.3.9 and Figure 2.3.10. In this case, the conditions are slightly 
warm near the window during the middle of the day but cold in other locations. Moving the 
thermostat away from the windows to zone 2 (see Figure 2.3.2) improves comfort in most of the 
space except near the windows where the conditions become quite warm. 

  
 

Figure 2.3.7 Profiles of average room air temperature and heat extraction rate for well-mixed 
and CFD-coupled zone air model using room-averaged air temperature for feedback control. 
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Figure 2.3.8 Indoor environmental metrics based on feedback control using average room 
temperature 

 
Figure 2.3.9 Indoor environmental metrics based on feedback control using the average of 

zones 1, 5, 10, 15, and 20 (oz 15, CFD-coupled model) as compared with well-mixed model 
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Figure 2.3.10 Heat extraction rate based on feedback control using the average of zones 1, 5, 

10, 15, and 20 (oz 15, CFD-coupled model) as compared with well-mixed mode 

  
Figure 2.3.11 Comparison of PMV variations for well-mixed model with CFD-coupled model 

assuming feedback based on zone 2 (left plot) and the average of zones 1, 5, 10, 15, and 20 
(right plot) 

 
2.3.5 Conclusions 
This section presented a unique approach for coupling a detailed energy load model with an 
indoor air model that provides spatial comfort information for a zone. The coupled model 
includes a reduced-order building envelope model that is generated from a detailed 
representation that considers all of the important energy flows. The indoor-air model is based on 
CFD data. The model captures some dynamic behavior of the Dirichlet-to-Neumann map and 
describes the response of surface heat fluxes to surface temperatures. This feature enables 
coupling of the indoor-air model to the building envelope dynamics. Additionally, the indoor-air 
model encodes the dynamic behavior of environmental quality metrics at specified locations of 
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interest. With this enhanced modeling capability we are interested in studying control schemes 
that are energy efficient and maintain human comfort. An initial case study was performed for a 
zone that has significant solar gains and where significant spatial variations in comfort 
conditions were observed. This study illustrated the importance of thermostat location and the 
need for detailed indoor air modeling when considering this type of building zone. 
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2.4 Inverse Model for Building Envelope and Equipment 
This section focuses on inverse modeling techniques for both envelope and equipment as well as 
the application to an existing building—Building 101 of the Navy Shipyard at Philadelphia, PA. 
  
2.4.1 Envelope inverse model 
 
2.4.1.1 Inverse model structure 
A simplified whole building model that was developed by Chaturvedi and Braun (2002) is shown 
in the figure below. In this representation, all of exterior walls are combined into a single exterior 
wall with an external boundary condition that includes the total incident radiation on all wall 
surfaces. Solar radiation that is transmitted through windows is assumed to be absorbed equally 
on two sides of an interior wall presentation. The interior wall also captures the effects of floors 
between stories of a multi-story building. An additional ground element is included to capture 
ground coupling dynamics. Internal radiative gains are assumed to be distributed with an even 
flux to walls and ceiling, whereas convective internal gains go directly to the zone air. A pure 
resistance is included to capture the effects of heat transfer across low-mass elements, such as 
windows or due to infiltration.   

 
Figure 2.4.1 Thermal network for a single zone building model. 

 
Applying an energy balance to each node in the network, a state-space representation can be 
established for this simplified model structure: 

b 
t
b

b b b
d

d
 

x
uΑ x B  

b b bb b  C uY x D  
 

where Yb is the output, which can be either cooling load (zone air temperature is input) or zone 
air temperature (cooling load is input). The state vector xb contains all the temperature nodes in 
the network and input vector ub includes boundary temperatures, solar radiation and internal heat 
gains. 
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For a fixed set of parameter values, the methodology of Seem et al. (1989) can be used to solve 
the state-space representation, and to predict cooling load or zone air temperature of the building 
as a transfer function of the input and state variables. The performance of the model can be 
evaluated in terms of how well the output (or prediction) matches the actual data (baseline). A 
commonly used criterion for the deviation of prediction from baseline is least-square error:  

2
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J
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  

where 

,b ky  = output (either 
Qb,k or ,b kT ) at time k ; 

,actual ky  = baseline output at time step k; 

So the formulation of our parameter estimation problem can be written as: 

 ,arg min



 bJ 


  

where  is the search region for the parameter values in the estimation process. This search 
region is determined according to the information available about the zone. This information can 
be obtained via several means, such as by requesting a survey from the building administrator or 
by looking at the blueprint of the building. Generally speaking, the less information we have 
about the building, the bigger the search region is for the optimization. When the search region is 
big, the estimation process could more easily converge to a local optimum. So some 
preprocessing is necessary in obtaining a good initial guess to improve the chances of obtaining a 
global optimal point. A robust and efficient training methodology is described in Cai and Braun 
(2012). 
 
2.4.1.2 Multi-zone building inverse model 
This section focuses on the application of this inverse modeling approach to a multi-zone case 
study that is based on the Navy Shipyard Building 101 located in Philadelphia, PA. Building 101 
is a three-floor building divided into three main sections: north wing, south wing and middle 
section. There are ten zones in the north wing that are served by one air-handling unit (AHU). 
Our case study for this section is focused on three zones that are on the second floor in the north 
wing, which are labeled as Z8, Z2 and Z3 in the floor layout in Figure 2.4.2.  

 
Figure 2.4.2 Floor layout and thermal network for three zones in Building 101. 
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Figure 2.4.2 also shows the thermal network of the three zones that are to be studied. This 
thermal network is built up based on the single-zone thermal network shown in Figure 2.4.1. But 
there are several modifications that are made to each of the zones. For all zones in this specific 
case study, there are no internal walls so the internal wall branches are taken out. But each zone 
has additional coupling wall(s) and boundary walls so related branches are inserted. The 
transmitted solar radiation is applied to the floor instead of the internal wall. In the single-zone 
thermal network, internal radiative gains are applied to the ceiling and external wall in an area-
weighted manner while in the three-zone network, these gains are assumed to go to ceiling and 
floor equally just for simplicity. In this initial study, all zones that are coupled to these three 

zones are assumed to have a fixed temperature of 22°C, which include all coupled zones in the 

1st and 3rd floors as well as the stair space and lobby for the 2nd floor. As a result of this 
assumption, all adjacent walls (excluding adjacent floors and ceilings) that are exposed to the 
same air temperature can be lumped into one boundary wall for a specific zone. For example, 
zone 2 is adjacent to stair space and lobby through west and east walls respectively and these two 
adjacent walls are lumped as one wall subject to the same boundary condition. This lumping 
approach would reduce the size of the estimation problem significantly. 
 
TRNSYS Simulation Results: 
Figures 2.4.3 and 2.4.4 show TRNSYS simulation results for a three-day period (650th to 722nd 
hours of the year) for this building located at Philadelphia, PA. This period is used to present all 
testing results for the rest of this section. Figure 2.4.3 shows zone-wise temperatures and ambient 
temperature and Figure 2.4.4 shows all energy inputs to the three zones. Cooling setpoints are 
29°C during unoccupied periods and 26°C in the occupied period. Heating setpoints are 15°C in 
the unoccupied period and 20°C for occupancy. These simulation results are during the winter 
time so there is heating for all three zones. Zone 2 has a window facing east while zone 3 has a 
larger window facing west, so peaks of solar radiation are occurring during morning time for 
zone 2 and in the afternoon for zone 3. Zone 8 has windows and walls with all of the four 
orientations so the solar radiation has longer effects for zone 8 compared to the other two zones. 
But due to the larger external wall area, zone 8 has more coupling to ambient temperature so it 
needs more heating during occupied periods. Zone 3 has only heating for the presented interval, 
but it actually has cooling for some days even in the winter time because of solar radiation 
transmitted through the large window on the west wall. Zone 2 and zone 3 have only heating for 
the whole simulation period (first 1000 hours of the year). 

 
Figure 2.4.3 Air temperatures for three zones and ambient. 



January 2013 

55 
 

 

 

 
Figure 2.4.4 Solar radiation, internal heat gains and sensible heating or cooling of zones. 

 
Zone-Wise Training: 
Applying the inverse modeling techniques described above, each zone model can be trained 
independently with the other two zone temperatures being boundary conditions. Results during 
the testing period are shown in Figure 2.4.5 for the three zones. The predictions are reasonable 
but this training approach results in different zone-to-zone coupling parameters for each of the 
individual zone models which leads to an overall energy imbalance for the three zones 
considered together.   
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Figure 2.4.5 Zone air temperature predictions from zone-wise trained model and TRNSYS 

model. 
Multi-Zone Coupled Training: 
In order to capture unique zone-to-zone coupling factors, a coupled multi-zone structure should 
be used and estimation should be performed for this coupled problem. Figure 2.4.2 shows a 
coupled thermal network for the three zones. In the coupled training process, all wall temperature 
nodes along with zone air nodes are combined into a single state vector. Each iteration of the 
training process requires the solution of a relatively large state-space model as compared with 
three separate solutions for three smaller problems with zone-wise training. This increases the 
computational requirement for each iteration. Also, the algorithm for parameter estimation is 
applied to a much larger dimensional search space (approximately three times larger for this case 
study) as compared with three separate smaller parameter estimation problems. The resultant 
estimation problem becomes very difficult to solve using the previously described solver. Even 
using 100 multi-start points, the errors of the estimated model are significantly larger than those 
for zone-wise training. This is undoubtedly because the parameter estimation procedure is 
determining a local minimum.   
 
Multi-Zone Heuristic Training 
The zone-wise training approach is not able to provide a single set of zone-to-zone coupling 
parameters but provides reasonable predictions and is computationally tractable. The multi-zone 
coupled training method determines unique coupling factors, but it leads to a large model 
structure and high-dimensional estimation problem, which is not easy to solve using the 
proposed training techniques. Therefore, a heuristic training scheme was investigated that 
combines elements of both training approaches. 
If the inter-zonal heat transfer is relatively small compared to other heat transfer paths, then 
zone-wise training can lead to zone models that are close to the optimum except for the coupling 
parameters. This is the basis for the heuristic strategy depicted in Figure 2.4.6 for a two-zone 
case. First, the individual zone models are trained assuming fixed coupling factors based on 
initial guesses. The zone model parameters are then used as fixed values for training the coupling 
parameters. These estimated coupling parameter values are then plugged back into the lower 
level zone-wise training process to tune the non-coupling parameters. The iterative process 
continues until satisfactory results are reached. This approach reduces the computation 
requirements and improves final model results. 
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Figure 2.4.6: A two-zone heuristic training scheme illustration. 

 
Table 2.4.1 shows comparisons of RMS errors associated with the training period for the three 
methods. The heuristic approach provides a single set of coupling factors. The overall accuracy 
is better than the coupled training approach and similar to the zone-wise training that utilizes 
separate coupling factors for each zone.   
 

Table 2.4.1: Model performance (temperature prediction RMS error in °C and load prediction 

relative RMS error in %) comparison for different training processes. 
 Zone 8 Zone 2 Zone 3 

Zone-wise 
training 

Temperature 0.23 0.174 0.51 
Load 4.42 2.03 4.28 

Coupled training Temperature 0.477 0.456 0.794 
Load 4.15 4.3 7.6 

Heuristic training Temperature 0.27 0.36 0.57 
Load 4.10 2.20 5.6 

 
2.4.1.3 Inverse model from measured data 
Fairly detailed measurements were available for the three zones on the 2nd floor, north wing of 
Building 101. Figure 2.4.7 shows the three zones with pink background color. This is slightly 
different from Figure 2.4.2 because zone 8 is now a physically separate zone (icon lab) and not 
coupled with zone 3. Also there is a conference room on the west of this zone.  
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Figure 2.4.7 Zoning of the three zones on 2nd floor, north wing. 

 
The training data set was collected in the following way: 

Zone air temperature— for each zone, there were several temperature sensors and the 
averaged value was taken for each zone. 

Sensible cooling—this was calculated using VAV box flow and temperature measurements 
along with return air temperature measurements.  However, VAV3 provides supply air to 
both the icon lab and a small conference room and relative cooling loads were estimated 
based on floor area ratios.   

Solar flux—solar flux measurements were available for the north, east and west walls. 
Internal gains from occupants—there was an occupancy counter for the 2nd floor of the north 

wing. The spatial occupancy distribution was the determined using zone area weighting.  
Each person was assumed to contribute 100 W internal sensible heat gain with 70% 
convective and 30% radiative. 

Internal gains from lights and other appliances—there were power measurements for lights 
and other appliances for the whole 2nd floor. The zone internal gains were estimated based 
on area weighting.  Lighting heat gains were assumed to be 70% radiative and 30% 
convective. For other appliances, heat gains were assumed to be 50% radiative and 50% 
convective. 

 
Using these measured data, inverse models were established for these three zones. Zone 8 was 
trained as a separate zone. Zones 2 and 3 were trained simultaneously in a coupled manner. The 
testing RMSE’s of zone 8, zone 3 and zone 2 were 0.56, 0.96 and 0.98 (C) respectively. It is 
believe that the model for Zone 8 was more accurate because information for initial parameter 
estimates were obtained from an on-site inspection, whereas the parameters for the other two 
zones were taken from the inputs to a TRNSYS model developed by UTRC. A lot of actual 
features were not reflected in the TRNSYS model, e.g., in TRNSYS model of zone 8 there are 9 
windows but actually 5 of them are shades that are normally closed at the site.  
There were some other uncertainties that could cause inaccurate model estimates. For example, 
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there was only one temperature sensor on first and third floor so temperatures on these floors 
were assumed to be identical for use as boundary conditions in the modeling. Also, zonal internal 
heat gains were estimate using area ratios and total heat gains.  

 
Figure 2.4.8 Performance of estimated model from measured data. 

 
2.4.1.4 Decoupled training approach 
Building 101 has a total of 59 zones.  Application of the coupled method to obtain an inverse 
model for this case would be computationally prohibitive because of the high dimensionality of 
the estimation problem.  Therefore, a scalable training method is needed that takes into account 
weak or non-existent couplings. Based on the initial information that is available about the 
building to be modeled, a sensitivity analysis can be performed to the large coupled model. From 
this analysis, a schematic algorithm was developed to identify the weak couplings between all 
the zones and by eliminating these weak couplings, a large coupled building model can be 
decoupled into several subgroups. 
Our estimator is a least square estimator with an approximate distribution of  
 
෠ߠ ∼ N௣ሺߠ଴, Σ଴ሻ  
 
where 
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and where ( )o   is the sensitivity matrix and o  is the Fischer information matrix (FIM). The 

variance of each parameter is inversely proportional to the diagonal element of this FIM. So the 
smaller the diagonal element is in FIM, the more confidence there is for the parameter estimate 
and model output is less sensitive to this parameter.  With this in mind, zone coupling strengths 
are evaluated using 
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where Coup_mat(i,j) is an index of coupling strength between zones i and j. Doing this 
calculation for the ten zones in the north zone of Building 101 shown in Figure 2.4.9, it was 
found that the strongest couplings are the pairs of [1,6] [3,5] [2,4] [1,7] [7,9] [2,8] [8,10] [2,10]. 
These ten zones could then be decoupled into three subgroups as shown in Figure 2.4.10. 
Previously developed training approaches can be applied to estimate each of the subgroups 
separately. As a byproduct of this decoupling approach, the non-sensitive parameters can be 
identified and fixed as the initial guesses, so that dimension of the estimation problem is reduced 
further and efficiency would be improved. The errors of the estimated model are listed in Table 
2.4.2 and reasonably accurate model was obtained. 
 

      
Figure 2.4.9 Floor layout for the ten zones. 
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Figure 2.4.10 Decouple the ten zones of Building 101 into three groups. 

 
Table 2.4.2 Testing errors for all the ten zones. 

 3 6 2 4 5 7 8 9 10 1 

RMSE (C) 0.55 0.53 0.21 0.23 0.26 0.24 0.18 0.42 0.48 0.5 

 
2.4.2  Equipment inverse model 
The HVAC system serving the north wing of Building 101 has a multi-stage direct expansion 
(DX) unit, one heating coil, one variable speed air supply fan and eight VAV boxes. In each 
VAV box there is a reheat coil to bring the supply temperature up to meet moderate cooling 
demands. The DX unit has the most significant energy consumption so most of our efforts have 
focused on developing an appropriate modeling approach for this equipment. Based on these 
models, optimization was performed to find an optimal control sequence (map). This optimal 
map could be used for model predictive control studies or implementation. 
 
2.4.2.1 DX unit overview 
Figure 2.4.10 is a sketch of the different components in the DX unit. It has two circuits and they 
were originally designed to be identical. Each circuit has a three-cylinder compressor and two 
unloaders so there are three stages excluding the off stage for each circuit and the total number of 
stages is six for the whole unit. There are two evaporators placed in parallel and the air flow 
across these two evaporators is driven by one supply fan. Each condenser has two fans so there 
are four stages for the condensers in total. The outlets of the condensers are connected to thermal 
expansion valves (TEV) to control superheat. Also there is a hot gas bypass from the compressor 
discharge to the evaporator inlet.  
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Figure 2.4.10 Sketch of DX unit. 

2.4.2.2 Supply fan model 
To calculate the AHU supply fan power, we can use a cubic correlation of the flow fraction, 
which is defined as the actual air flow rate to the nominal value. The nominal air flow rate 
(Vrated) is 20,500 cfm and the allowed minimum air flow fraction (γ) is 50%. To estimate the 
coefficients, all measured quantities were averaged over a 30-minute period and performance of 
the resulting model is illustrated in Figure 2.4.11. 
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Figure 2.4.11 Supply fan model performance. 

2.4.2.3 ASHRAE Toolkit model 
The ASHRAE Toolkit model (Brandemuehl, 1993) was implemented in this study as an initial 
approach for modeling the DX unit.  However, some modification was made to capture some of 
the specific features of this system. In the calculation of total capacity and energy input ratio 
(EIR, reciprocal of COP), correction factors are used to capture the effects of inlet air wet bulb 

4.16% error 
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temperature for the evaporator (Twb,evap), inlet air dry bulb temperature for the condenser (Tcond) 
and air flow rate in the original Toolkit model. In our application, an additional correction factor 
is considered for representing the staging effect, which appears as the last term correction factor 
in the following two equations.  
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To calculate the sensible heat ratio (SHR) for a DX coil, a bypass factor method is used in the 
Toolkit model, but it only considers a constant air flow rate. To consider varying air flow rate, 
the effect of air flow on the bypass factor (BF) is considered in the following manner: 
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The empirical coefficients (h0 and h1) were estimated for the DX coil serving the north wing of 
Building 101 using the calculated capacity, EIR and heat transfer coefficient from measured 
data. The DX system compressors cycle at fairly high frequency (period is approximately 5 
minutes), so averaged quantities were calculated and used in the regression, with an averaging 
window of 30 minutes. Due to this averaging operation, the compressor stage number (Stage) 
was taken as a continuous variable from 0 to 6. The figure below shows the training results and a 
reasonably accurate model was obtained. 
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Figure 2.4.12 Comparison of predicted and measured capacity, EIR and SHR. 

2.4.2.4 Toolkit model based optimization 
The developed DX unit model takes ambient and indoor air conditions, supply air flow rate and 
compressor stage number as inputs and outputs total power consumption (compressor power plus 
supply fan power) as well as outlet air condition. To meet a given sensible cooling load there is 
only one degree of freedom, which can be manipulated by controlling supply air temperature 
setpoints. Optimization was performed to find the optimal map for any specific operation 
condition and required sensible cooling load. This optimization problem can be formulated as 
follows: 

SHR (4.02% error) 

EIR (3.1% error)  Capacity (2.7% error) 
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In this formulation, the over-lined variables, like the ambient conditions and required sensible 
load (Qsen) are given beforehand. SHRmax is the allowed maximum sensible heat ratio which 
corresponds to a minimum dehumidification level. This value can also be set beforehand. For our 
system, the allowed minimum and maximum air flow rates are Vmin=10250 cfm and Vmax=20500 
cfm. The leaving air temperature setpoint Tlvg is the optimization variable. Figure 2.4.13 provides 
a visualization of the power consumption variation with respect to the supply air temperature for 
a specific case with specified external variable values. The on-site supply air temperature 
setpoint is constant at 14.1 C and the corresponding power consumption for the specified 
conditions is 38.52 kW. Looking at the total power curve we see that increasing the supply air 
temperature would reduce total power consumption since latent load is reduced. If SHRmax=0.85 
is given then the optimal supply air temperature setpoint would be 15.2 C and the corresponding 
power for these conditions would be 31.03 kW, which is approximately a 19% energy saving. In 
addition, increasing supply air temperature would also reduce the reheat, if any. So there could 
be even greater energy savings potential. 

 
Figure 2.4.13 DX model outputs with respect to supply air temperature (Tdb, w: dry bulb 

temperature and humidity ratio of the air entering cooling coil; Qsen: required sensible load). 

According to the capacity plots in Figure 2.4.13, there would be a capacity drop from 80 kW to 0 
if the stage number transitioned from 1 to 0. The slope of capacity to stage number is much 
smaller at higher stage numbers. This phenomenon can also be seen from the plotted surface of 
capacity to air flow rate and stage number in Figure 2.4.14. This unrealistic behavior happens 

Current operating point Optimal operating point 
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because in the training data set the stage number is greater than 2.5 most of the time.  As a result, 
there is no confidence in the model predictions at low stage numbers.  

 
Figure 2.4.14 Visualization of capacity and total power for Toolkit model. 

2.4.2.5 Gray-box model 
The ASHRAE Toolkit is a black-box model for calculating the total power consumption and 
capacity and extrapolating performance is not guaranteed.  As a result, there is not much 
confidence in the optimization results that were determined in the previous section using this 
Toolkit model. To solve this problem more physically-based models were developed at the 
component level and then coupled together to form an integrated gray-box model.  The 
parameters of the component models were estimated from measured data. 
 
Compressor:  
The compressor models for mass flow rate and power consumption are given as follows: 
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As a reference for the actual compressor performance, an ideal isentropic process (Threlkeld, 
1962) is used in this formulation. With this assumption, a polytropic compression exponent n is 
taken as the ratio of the constant pressure to constant volume specific heats k. The empirical 
parameters c1 to c4 are estimated from measured data.  The parameter c1 is an effective clearance 
volume ratio that influences the volumetric efficiency of the compressor as a result of re-
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expansion of the gas prior to the suction valve opening. This re-expansion process also depends 
on the ratio of the discharge to suction pressure.  In addition to these parameters, the compressor 
mass flow rate depends on the rated displacement volume (V),  RPM and suction density (ρsuc). 
Jähnig (1999) pointed out that the compressor overall energy efficiency (ηcomb) has significant 
dependence on the evaporating pressure. For our system the number of operating compressor 
stages is also a dominant variable. A linear form was assumed for the dependence of combined 
efficiency on  evaporating pressure and stage number.  Evaporating pressure and stage number 
have significantly different scales so normalization was performed for these two quantities, 
where Pevap,max is the maximum evaporating pressure for the measured data and the maximum 
stage number is 3. 
 
Since we only had measurements for the compressor power and no information was available for 
the refrigerant mass flow rate, all four parameters were estimated simultaneously in the 
compressor power (Pcomp) formulation. It was seen from measured data that the isentropic 
efficiency was relatively constant and close to 0.8. From measured data, the superheat was taken 
to be a constant 10 C. The training root mean square errors for power predictions were 5.2% for 
compressor A and 1.8% for compressor B. The sets of parameters have different estimated 
values for these two compressors but the models have similar trends. Visualization of the model 
outputs with respect to different inputs are provided in Figure 2.4.15. The surfaces with white 
background color are plotted from the compressor map provided by the manufacturer. From 
these plots it can be seen that the estimated model of compressor B is a good match to the rated 
performance but there is significant deviation for compressor A.  It appears the compressor A is 
not performing well compared to its original performance.    

 
Figure 2.4.15 Comparisons of estimated compressor model to the rated compressor map. 

Evaporator: 

Compressor A  
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The effectiveness method was applied to model the evaporator. There are two DX cooling coils 
and the inlet air conditions are assumed to be identical for these two coils but inlet refrigerant 
conditions can be different. The heat transfer conductance (UA) is correlated with the air side 
(mair) and refrigerant side (mr) flow rates, with g2 to g5 being the correlation coefficients that 
need to be estimated. There is moisture removal for this cooling coil, so air enthalpies are 
considered in calculating the total capacity. hair,in is the inlet air enthalpy and hair[P] is the 
saturated air enthalpy when an air temperature equal to the refrigerant saturated temperature at 
pressure P. Also we assume the two cooling coils have the same geometric and physical 
properties so that the parameter sets have identical values for the two coils. The trained total 
capacity had a root mean square error of 5.8%. 
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Condenser fan: 
There are two condensing coils and for each coil there are two fans. We had measurements for 
the number of operating fans (Stagecond, fan) but no direct measurements of air flow rates (ma,cond). 
In order to calculate the heat exchanger conductance, information about the air flow rate was 
necessary. The air flow was estimated from an energy balance on the condensers with the 
condenser heat rejection determined from an overall energy balance on the DX unit.  The air 
mass flow for each condenser was correlated with fan staging using the following form. 
 

2
, ( ) 0 1 , , ( ) 2 , , ( ):a condA B cond fan A B cond fan A Bm c c Stage c Stage      

 
Where c0 to c2 are the correlation coefficients and Stage is the number of operating condensing 
fans for one condensing coil. The coefficients were assumed to be identical for the two coils. The 
training result had a RMSE of 12%.  Figure 2.14.16 shows outputs for condenser air flow rate as 
a function of fan staging. The rated air flow rate is 8.7 kg/s for each unit, which matches the 
model output at full load.  

 
Figure 2.4.16 Variation of air flow rate to the number of operating condensing fans. 
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Condenser capacity: 
Similar to the evaporator model, an effectiveness method was also applied to calculate the heat 
transfer rate for the condenser. However, the condensing coil is always dry so temperature 
difference is used instead of enthalpy difference when calculating capacity. Tr,cond is the 
condensing temperature and Tair,in is inlet air temperature. Again, the parameters were assumed 
to be identical for the two coils. The trained model had a RMSE of 9% for total condenser 
capacity. 
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Thermal expansion valve (TEV): 
Thermal expansion valves are used in the current system to regulate the refrigerant mass flow 
rate for the purpose of maintaining a constant superheat. Mathematical models for a TEV can be 
found in Broersen (1982) and James (1987). We assume the bulb temperature has slower 
dynamics than that of the compressor inlet temperature, which makes it reasonable to apply a 
quasi-static model, i.e., the bulb temperature is always equal to the compressor inlet temperature. 
In this case, the mass flow rate through the TEV can be calculated as: 

   1 2 3      
r b evap in cond evapm c c P c P P P  

where Pb is the saturated pressure of the refrigerant at bulb temperature and ρin is the refrigerant 
inlet density (saturated liquid density at the evaporating pressure). To estimate the coefficients, 
mass flow rate was back calculated using the condenser capacity and enthalpy difference across 
condenser. The RMSE of the estimated model was 14.5% for refrigerant mass flow rate. 
 
Integrated model: 
Table 2.4.3 shows the error of the estimated models for each component. Although errors are 
relatively large for the condenser fan and TEV models, the integrated model behavior is not that 
sensitive to these components. 
 

Table 2.4.3 Error for each component in the system. 

 A B

Compressor (power) 5.1 (%) 1.8

Condenser fan (cap) 12.5

Condenser (cap) 9

TEV (mass flow) 14.5 14.5 

DX coil (cap) 5.8

 
Figure 2.4.17 provides a flow chart for the integrated model. The double-underscored variables 
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are external inputs (boundary conditions). The underscored variables, discharge and suction 
pressures (Pdis, Psuc), are internal variables that need to be solved iteratively.   
 

 
Figure 2.4.17 Flow chart of the integrated model. 

Figure 2.4.18 demonstrates that the integrated model predicts both DX unit cooling capacity and 
compressor power consumption reasonably well. The RMSE’s are 5% for capacity and 6% for 
compressor power. 
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Figure 2.4.18 Comparisons of the predicted capacity and compressor power to the actual values 

2.4.2.6 Comparison of Toolkit and gray-box models 
Figure 2.4.19 shows capacity and compressor power variation with respect to stage number and 
supply air flow rate for the Toolkit and gray-box models. As previously mentioned, the Toolkit 
model predictions do not make sense for low stage numbers because capacity and power do not 
approach zero as stage number goes to zero. However, the gray-box model does not have this 
problem and the estimated capacity falls off quickly as the stage number approaches zero. For 
the compressor power prediction, the gray-box model indicates that the power is mostly 
dominated by stage number and air flow rate has a small influence. The trend is similar for the 
gray-box model except at low stage numbers where the air flow dependence becomes artificially 
high.  In region where data were available for training, agreement between the two models is 
very good for both capacity and power consumption.   
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Figure 2.4.19 Comparison of Toolkit and gray-box models. 

2.4.2.7 Gray-box model based optimization 
The gray-box model has better extrapolating performance but it is computationally inefficient 
because an iterative process is needed to calculate the internal variables. When generating the 
optimal map, the computational burden is significant. To improve the efficiency, we 
implemented a modified Toolkit model but used gray-box model outputs as the training data. To 
capture the nonlinearities with respect to stage number and air flow rate, more terms are added to 
the Toolkit model correlation and as a consequence more coefficients have to be estimated. In 
this situation normalization is important to avoid rank deficiency. The trained model shows good 
agreement with the gray-box model, with a maximum deviation less than 2%. 
Optimization was then performed on the gray-box model as well as the modified Toolkit model 
and example results are shown in Figure 2.4.20. The resulting optimal operating conditions are 
slightly different (supply air temperature is 15.6 C for gray-box model and 15.4 for Toolkit 
model). The calculated energy saving potential is 16.4% using the gray-box model and 20.2% 

gray-box 

gray-box 
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using the Toolkit model.  

 
Figure 2.4.20 Optimization results. Left: gray-box model. Right: Toolkit model. 
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2.5 Data-Driven Model  
This section presents the development of control-oriented models for the thermal zones in 
buildings. Low-order state-space models are identified from the designed input-output responses 
of thermal zones with disturbances from ambient conditions and internal heat gains. A high-
fidelity TRNSYS model of an office building was used as a virtual testbed to generate data for 
system identification, parameter estimation, and validation of the proposed model structures. 
This section concludes with evaluations of the state-space model in terms of model accuracy for 
predictive control design. 
 
Our case study is focusing on the north-wing of Building 101 served by Air Handler Unit 3 
(AHU). The HVAC system includes a direct expansion (DX) coil for cooling and a gas-fired 
boiler for heating. The AHU is connected to 8 VAV boxes downstream with reheat coils. The 8 
VAV boxes serve a total of 10 zones, in which VAV #1 and VAV #8 serve zones 1 & 10 and 
zones 8 & 9, respectively. There is only one supply fan to satisfy the flow rate requirements from 
all the VAV boxes. 

 
Figure 2.5.1 Screenshot of TRNSYS model for north-wing of Building 101 

 
2.5.1 HVAC Equipment Model 
For supervisory level building control and optimization, we assume that the dynamics associated 
with HVAC equipment is much faster compared to the dynamics from building envelope and 
zones. Thus, the HVAC equipment model can be treated as quasi-steady state within the time 
scale of interest. The following presents the HVAC equipment model employed in this study. 
 
2.5.1.1 Fan Model 
The power of the supply fan is modeled as a performance map as a function of the fan control 
signal: 
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௙ܲ௔௡ ൌ 	 ௥ܲ௔௧௘ௗሺܽ଴ ൅	ܽଵߛ ൅ ܽଶߛଶ	ሻ                                         (2.5.1) 
 
Where ௥ܲ௔௧௘ௗ is the rated fan power, ߛ is the supply fan control signal normalized to [0-1], 
ܽ଴,			ܽଵ, ܽଶ are coefficients determined based on historical data (i.e., March and April in 2012) 
from Building 101. The parameter values are summarized in Appendix 2.5 (Table A.2.5.1). The 
temperature rise across the supply fan is modeled as: 
 

௙ܶ௔௡,௢௨௧ ൌ ஽ܶ௑,௢௨௧ ൅
௉೑ೌ೙ሺఎ೘ାሺଵିఎ೘ሻ௙೘೚೟೚ೝ೗೚ೞೞሻ

ఊ௏ሶ೟೚೟,೘ೌೣఘೌ೔ೝ஼೛ೌ
                            (2.5.2) 

 
where ஽ܶ௑,௢௨௧ is the air temperature after the DX coil before the supply fan. All other parameters 
and their values are listed in the Appendix 2.5 (Table A.2.5.2). 
 
2.5.1.2 DX Coil Model 
The DX coil model is also modeled as a performance map based on design information. In 
particular, the coefficient of performance (COP) is modeled as a function of the partial load ratio 
(PLR): 

 
ܱܲܥ ൌ ܽ଴ܴܲܮସ ൅ ܽଵܴܲܮଷ ൅	ܽଶܴܲܮଶ ൅	ܽଷܲ(2.5.3)                           ܴܮ 

 

ܴܮܲ ൌ 100 ⋅ ொೌ೔ೝ೟೚೟
ொೌ೔ೝ೘ೌೣ

                                                   (2.5.4) 

The parameter values are listed in the Appendix 2.5 (Table A.2.5.3) and the COP map is shown 
in Figure A.2.5.1. The maximum air-side heat transfer ܳ௔௜௥௠௔௫ is obtained from the design 
information (see Table A.2.5.3). The total air-side heat transfer ܳ௔௜௥௧௢௧ is determined by: 

 
ܳ௔௜௥௧௢௧ ൌ ܳ௦௘௡/ܵ(2.5.5)                                                ܴܪ 

 
where ܳ௦௘௡ is the air-side sensible heat transfer: 

 
ܳ௦௘௡ ൌ  	 ሶ݉ ௦௔ ⋅ ܿ௣௔ ⋅ ሺ ௠ܶ௜௫ െ ஽ܶ௑,௢௨௧ሻ                                 (2.5.6) 

 
where ܳ௦௘௡ is the air-side sensible heat transfer, ሶ݉ ௦௔ is the air mass flow rates across the DX 
coil, ܿ௣௔ is the specific heat of moist air, ௠ܶ௜௫ is the mixed air temperature before the DX coil, 
and ஽ܶ௑,௢௨௧ is the air temperature after the DX coil. 

 
The sensible heat ratio (ܴܵܪ), defined as the ratio of air-side sensible heat transfer to the total 
heat transfer, is determined based on a regression fit. The data used for calibration and validation 
are obtained from the Building 101 TRNSYS model. 

 
ܴܪܵ ൌ ܽ ⋅ ߱௠௜௫

௕                                                 (2.5.7) 
 

where ܽ and ܾ are coefficients determined from the regression fit. 
 

߱௠௜௫ ൌ ,௢௔ܪ௢௔߱௢௔ሺܴߙ ௢ܶ௔ሻ ൅ ሺ1 െ ,௥௘௧ܪ௢௔ሻ߱௥௘௧ሺܴߙ ௥ܶ௘௧ሻ           (2.5.8) 
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where ߙ௢௔ is the outdoor air fraction. ߱௢௔, ߱௥௘௧, ߱௠௜௫	are the humidity ratios of outdoor air, 
return air, and mixed air, respectively.  ܴܪ௢௔, ܴܪ௥௘௧, ܴܪ௠௜௫	are the relative humidity of outdoor 
air, return air, and mixed air, respectively. ௢ܶ௔, ௥ܶ௘௧, ௠ܶ௜௫	are the temperatures of outdoor air, 
return air, and mixed air, respectively. ߙ௢௔ is the outdoor air fraction. 
 
Finally, a constraint based on the maximum cooling capacity of the DX coil is added to the MPC 
formulation:  

max൫ ௠ܶ௜௫ െ ஽ܶ௑,௢௨௧൯ ൌ
ௌுோ⋅ொೌ೔ೝ೘ೌೣ

 	௠ሶ ೞೌ஼೛ೌ
                               (2.5.9) 

 
2.5.1.3 VAV Box Model 
A VAV box typically includes a damper to adjust the air flow rate and a reheat coil to adjust the 
hot water flow rate in order to meet the cooling or heating demands from the zone. In the 
TRNSYS model, there are two individual PID feedback control loops in each VAV that 
commands the air flow setpoint and reheat valve position, respectively. For supervisory control, 
it is assumed that the air flow setpoint can be met by the local PID controller and thus the 
characteristics from damper position to the actual air flow rate are not considered. However, 
since the reheat valve position is assumed to be our controlled variables in the optimization 
problem, a model is need to account for the relationship between reheat valve position to the 
VAV discharge air temperature is needed. The maximum design air and hot water flow rates are 
summarized in the Appendix 2.5 (Table A.2.5.4) for each VAV box. 
 
An existing heat exchanger model (Type670) from the TESS Library (TESS) is adopted as the 
reheat coil model in our study. The heat transfer of the reheat coil is determined based on 
effectiveness and a theoretically maximum possible heat transfer. 
  

ܳ௠௔௫ ൌ 	୫୧୬ܥ ⋅ ሺ ுܶௐௌ െ ௙ܶ௔௡,௢௨௧ሻ                                      (2.5.10) 
 

where the minimum heat capacitance ܥ୫୧୬ is defined as: 
 

୫୧୬ܥ ൌ  	min	ሺ ሶ݉ ௛௪ܥ௣௪, ሶ݉ ௩௔௩,௔௜௥	ܥ௣௔ሻ	                                     (2.5.11) 
 

From the simulation data generated by the TRNSYS model, we observed that the water-side heat 
capacitance is nearly always smaller than that of the air-side. The following assumption is made 
in order to avoid “if-else” scenarios in the optimization: 

୫୧୬ܥ ≅  	 ሶ݉ ௛௪ܥ௣௪                                                    (2.5.12) 
where ሶ݉ ௛௪	is the hot water mass flow rate in a given reheat coil and ܥ௣௪ is the specific heat of 
water. The actual water-side heat transfer across the VAV reheat coil is given by: 

 
ܳோு ൌ  ௠௔௫                                                      (2.5.13)ܳߝ	

 
where ߝ is the effectiveness of the reheat coil and it is assumed to be a constant in the TRNSYS 
model. The temperature rise across the VAV box could thus be determined as: 
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                                        (2.5.14) 

where  is the air temperature after the supply fan given in Eq. 2.5.2. 
 
2.5.2 Case Study 1: Building 101 Simulation Study 
Figure 2.5.2(a) shows the floor map and zone mapping for the north-wing of Building 101. 
Figure 2.5.2(b)  shows the outside view of Building 101 at the Philadelphia Navy Yard.  

                    
            (a) Zone mapping of Building 101          (b) Building 101 at the Philadelphia Navy Yard 

Figure 2.5.2 Zone mapping and outside view of Building 101 
 
2.5.2.1 Model Development: System Identification 
System identification typically requires an iterative procedure involving the following steps: 

1) Selection of input and output signals. 
2) Functional tests to excite system dynamics within certain input frequencies of interest. 
3) Selection of model formats and parameter estimation. 
4) Validation of models based on an independent data set. 

 
Until the model reaches an acceptable accuracy, the above steps may be repeated for an 
incremental improvement of the model accuracy. 
 
For the building model, we considered the control inputs of VAV supply air flow rate setpoints 
and zonal supply temperature with ambient temperature as measured disturbances. The outputs 
of the model are zone air temperatures.  Although solar radiation and internal gains were not 
included as measured disturbances, the responses of the zones to these inputs are significantly 
slower in comparison to VAV supply conditions.  However, this may limit the ability of the 
model to look ahead over longer time intervals and to properly consider the effects of energy 
storage within the building mass. Note that for a MPC implementation, an additional model is 
needed to compute the VAV supply air temperature from the supply air flow and reheat valve 
position. For simplicity, the same sampling time was used for all the zones. Step response tests 
were first conducted to evaluate the dominant time scale of the system, the sampling time (3 
minutes) was then chosen to ensure that there are at least 4-10 samples within the rise time of the 
step response (Åström and Wittenmark, 1997).  
 
In the early development, solar radiation was included as an input. However, it was found that 
the effect of solar radiation on the dynamic response of the zones was quite small and not 
included in the final model. This may not be the case for other buildings or if longer time horizon 
predictions are desired. Figure 2.5.3 shows the input (flow setpoints and valve positions) and 
output signals (zone temperature) selected in the system identification experiments. 
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Figure 2.5.3 Input and output signals employed in system identification 

 
The linear state-space model for zone temperature dynamics is given by 
 

ොሺ݇ݔ ൅ 1ሻ ൌ ොሺ݇ሻݔܣ ൅  ሺ݇ሻ                                               (2.5.15)ݑܤ
෠ܶ௠௢ௗ௘௟ሺ݇ሻ ൌ ොሺ݇ሻݔܥ ൅  ሺ݇ሻ                                             (2.5.16)ݑܦ

 
where k is the current time step, ݔො is the state vector, u is the input vector, ෠ܶ୫୭ୢୣ୪ is the predicted 
zone temperature, and A, B, C, D are system matrices. The convective coupling between zones 
was not considered in the current TRNSYS model and thus the state-space models, but the 
importance of this coupling will be considered in our future studies. We considered a scalable 
approach to train the model in a semi-automatic fashion. A simultaneous zone model training 
structure was established to inject signals and perform identification experiments for all zones. 
The data was collected and converted to specific format that is consistent with the MATLAB 
System Identification Toolbox (Ljung and Singh, 2012).  
 
Figure 2.5.4(a) and 2.5.4(b) show the excitation signals for supply air flow setpoint and reheat 
coil valve position, respectively. The ambient temperature profile during the functional test 
period is shown in Figure 2.5.4(c). Figure 2.5.4(d) shows the maximum temperature, minimum 
temperature and maximum temperature difference of each zone during the functional tests. Most 
of the zones had a zone temperature variation larger than 10°C (18°F), which is credited to the 
full-range input signals employed in the identification experiments.  
 

                     

       (a) Excitation signals for air flow setpoints      (b) Excitation signals for reheat valve position 
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                       (c) Ambient temperature                            (d) Variations of zone temperature 
Figure 2.5.4 System identification and validation experiments 

 
Our preliminary study suggested that a low-order (3rd order) ARX model identified1 with the 
same training data and the same number of inputs could not predict the zone dynamics well when 
the magnitude of excitation was large, and it only worked well for a small range of operation (Li 
et al., 2012). More details about the ARX model is described in the Appendix 2.5. Example 
validation results are shown in Figure 2.5.5(a) for an ARX trained for zone 5. Through a trial-
and-error process, we selected the low-order state-space model as it yielded superior 
performance over the ARX model for the full-range of input signals. Figure 2.5.5(b) provides 
validation results for the low-order state-space model of zone 5, which has significant better 
performance compared to the ARX model predictions shown in Figure 2.5.5(a).  

                                   

                 (a) Validation of ARX model                  (b) Validation of low-order state-space model            
Figure 2.5.5 Comparisons of performance of low-order ARX and low-order state-space model 

under large excitations 
 

2.5.2.2 Model Development: State Estimation 
In order to use the state-space model for online control, the initial states at each times step should 
be estimated. Since we opted for a data-driven approach, the states have no physical meaning 
and it would be difficult to guess their actual values. Alternatively, one could consider the 
system to start from an equilibrium condition, but the initial transients of system states will be 
large since it is expected that the initial states are not zero.  
 

                                                 
1 The ARX model was identified based on least-squares estimation method implemented in the MATLAB System Identification Toolbox. 
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To tackle this problem, we applied a linear Luenberger observer for the purpose of state 
estimation. The outputs from the TRNSYS model (i.e., virtual test bed) were assumed to be the 
“measured” values. The observer equation is given by 

෠ܶ௠௢ௗ௘௟ሺ݇ሻ ൌ ොሺ݇ሻݔܥ ൅  ሺ݇ሻ                                            (2.5.17)ݑܦ
ොሺ݇ݔ ൅ 1ሻ ൌ ොሺ݇ሻݔܣ ൅ ሺ݇ሻݑܤ	 ൅ ሺܮ	 ୲ܶ୰୬ୱ୷ୱሺ݇ሻ െ ෠ܶ୫୭ୢୣ୪ሺ݇ሻሻ                   (2.5.18) 

 
For a given zone, the observer gain L was determined based on an offline optimization that 
minimizes the sum of squared errors. 
 

ܮ ൌ argmin௅ ∑ ൫ ୲ܶ୰୬ୱ୷ୱሺ݅ሻ െ ෠ܶ୫୭ୢୣ୪ሺ݅ሻ൯
ଶே౥ౘ౩

௜ୀଵ                           (2.5.19) 
 
where Np is the model prediction horizon in MPC, and Nobs is the number of historical data points 
used in the optimization to obtain L, and ୲ܶ୰୬ୱ୷ୱ is zone temperature “measured” from the 
TRNSYS model. Figure 2.5.6 shows the block diagram for the signal flows among the TRNSYS 
model, state observer, and MPC controller. More detailed procedures for the implementation and 
algorithm execution during MPC operation are shown as a flow chart in the Appendix 2.5 
(Figure A.2.5.2).  

 
Figure 2.5.6 Block diagram of signal flows among TRNSYS, observer, and MPC 

 
2.5.2.3 Simulation Results 
For system identification and validation, we performed functional tests during the 1st week of 
August using virtual weather data from 2011 (Weather Analytics, 2012). Data from the first three 
days was used for model identification, and data from the last two days was used for model 
validation. Figure 2.5.7(a) shows comparisons of 2nd order state-space model predictions with 
data for all 10 zones served by AHU3 based on validation data. To evaluate the effectiveness of 
model performance for MPC implementation, Figure 2.5.7(b)  and 2.5.7(c)  show comparisons of 
root mean squared error (RMSE) for the 10 zones with predictions of 1 hr., 2 hr., 4 hr., 8 hr., and 
open-loop scenarios based on functional test and TRNSYS baseline input-output data, 
respectively. The scenarios for predicting 1 hr., 2 hr., 4 hr., and 8 hr. ahead were realized by 
reinitializing the system states every 1hr., 2 hr., 4 hr., and 8 hr., respectively. The open-loop 
scenario did not involve any reinitialization of system states. 
 
Note that we performed very aggressive functional tests (see Figure 2.5.4) to fully excite the 
system dynamics with predictive results in Figure 2.5.7(b)  that appear to be quite good for 
control design.  For the additional model validation results in Figure 2.5.7(c), baseline feedback 
controllers were implemented within the TRNSYS testbed that adjusted air flow rates or reheat 

trnsys ( )T k ˆ( )x k model model
ˆ ˆ( ) ... ( 1)pT k T k N ( , , )A B L

*( )u k
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valve to maintain zone temperature setpoints2. The TRNSYS zone air flow rates and supply air 
temperatures were then fed into the simplified model to determine the zone temperature 
responses that were compared with TRNSYS zone temperatures.  Overall errors in the zone 
temperature predictions for this test case are presented in Figure 2.5.7(c).  This control input 
scenario is much different than that employed during the model training periods shown in Figure 
2.5.4(a) and 2.5.4(b). Overall, the model yielded much worse results for both short-term and 
long-term predictions than those presented in Figure 2.5.7(b). The degraded model performance 
under this validation scenario is probably due to the fact that the effects of solar radiation and 
internal loads become more important relative to the control inputs (zone supply air flow rate and 
temperature); as compared with the validation scenarios based on functional test data. Future 
study will be conducted to address the aforementioned limitations.  In particular, better models 
may be needed to approach optimal MPC performance in the presence of variable utility rates 
and demand charges because longer prediction horizons are required. Uncertainty analysis for 
internal and solar heat gain predictions should be carried out before these gains are added as 
inputs to the predictive model. Future study will be conducted to address this problem and the 
uncertainty estimation algorithms proposed in Section 3.5.2.1 will be considered. 

   

(a) Zone model validation (functional tests, 2 hr. prediction) 

                               

(b) RMSE with input-output data from functional tests (c) RMSE with baseline input-output data 
Figure 2.5.7 Validation results for 10 zones in Building 101 

                                                 
2 The baseline controller will either adjust VAV reheat valve position with minimum supply air flow setpoint when the zone temperature is 

below a prescribed heating setpoint or adjust supply air flow setpoint with reheat valve closed when the zone temperature is above a prescribed 
cooling setpoint. The supply air flow setpoint will be kept as minimum with reheat valve closed if the zone temperature could be maintained 
between the heating and cooling setpoints (i.e., no feedback control). 
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2.5.3 Case Study 2: UTRC L Building Testbed 
In addition to B101 simulation study, we have further investigated data-driven modeling 
approach with the low-order state-space model format based on real-building data from UTRC L 
Building Testbed. The same set of model inputs with Building 101 case study were adopted (see 
Figure 2.5.3), which include supply air flow rate setpoint, supply air flow temperature, and 
ambient temperature. The excitation signals during the functional tests are presented in the 
Appendix 2.5 (Figure A. 2.5.3). Preliminary study indicates that the uncertainties of internal heat 
gains play an important role to the responses of zone temperature. The model inputs were 
selected based on the specific needs of our MPC strategy where a relative short prediction 
horizon is adopted for the purpose of minimizing energy consumption rather than energy cost. 
The model should include uncertainty estimations and predictions due to variations in zone loads 
if a longer prediction horizon is needed.  
 
Since MPC is operated in closed-loop fashion and the system states are initialized based on 
previous temperature measurements at each time step of the optimization. To evaluate the model 
quality for a more realistic scenario for MPC operation, we have investigated the model 
predictions when reinitializing the sates every 2 hours. Preliminary studies showed that the zone 
temperature prediction errors could be maintained within 1°C as shown in Figure 2.5.8. 
However, we have experienced some challenges of having a robust and consistent model 
performance for different validation scenarios and time periods. 
 

 
Figure 2.5.8 Validation results of low-order state space model with 2 hr. state reinitialization 

using regular operation data 
 
To further investigate the modeling approach and improve the model quality, we are considering 
augmenting the uncertainty estimations to the existing low-order state-space model. The 
uncertainty estimations would account for the lumped effects of internal heat gains from 
occupancy, lighting, equipment, and coupling between zones, etc. However, we realize that it 
would be very difficult to accurately estimate the uncertainty propagations in the predictive 
control framework, especially when relevant measurements are not available to generate some 
time-varying profiles that could be helpful in the predictions. Future study will be conducted to 
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address the issues of uncertainty estimations and propagations for the internal heat gains and 
their impact to the zone temperature predictions with real-building data. 
 
2.5.4 Conclusions 
We have investigated data-driven modeling approaches for MPC in buildings and have 
demonstrated that reasonable model accuracy for zone temperature predictions could be obtained 
with low-order state-space models with full-range excitation signals to the dynamic system in the 
absence of any feedback control. The results were not nearly as good when using control inputs 
from baseline control2 of zone temperature, particularly for longer prediction horizons. 
Additional work is necessary to assess the utility of the proposed modeling approach within 
MPC implementations compared to alternative modeling approaches that include internal gains 
and solar radiation as inputs, particularly for longer-term prediction horizons needed to account 
for building thermal mass effects. Future work will include an investigation of the modeling 
approaches and accuracy for Building 101 at the Philadelphia Navy Yard in 2013 using real-time 
measurements.  
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3. Optimal Supervisory Control  
3.1 Introduction  
In a general sense, optimal supervisory control involves minimization of a cost function (e.g., 
energy cost) with respect to control setpoints (e.g., chilled water and air supply temperatures) 
and subject to constraints (e.g., comfort and equipment capacities). More specifically, model 
predictive control (MPC) involves minimization of an integrated cost (e.g., daily) and employs 
building and equipment models as key elements in enabling adaptive and predictive control in 
response to time varying inputs.  Generating models, constraints, and appropriate cost functions 
for a new application can be time consuming and expensive and has been a limiting factor for 
widespread application of optimal control.  The primary goals are to develop and demonstrate a 
process, tools and algorithms that can significantly reduce the development and commissioning 
time/cost to implement optimal supervisory control for retrofits in buildings.   
 
3.2 Building 101 Simulation Based MPC Study  
In this section we present the details of the control design, implementation and validation in 
simulation environment for Building 101 in Philadelphia Navy Yard. The intent of this work is to 
facilitate control algorithm development, implementation and refinement such that we can 
evaluate the energy management performance associated with the control implementation with 
respect to the present baseline control in the building. A secondary goal of this work is to 
implement the supervisory control algorithms, with energy efficiency objectives, that can be 
deployed in real building control architecture with short commissioning time and seamless 
integration with the building management system. 
 
The Building 101 model used for this study is implemented in TRNSYS (Klein, 1976) 
simulation environment and has been developed within the EEB Hub project.  
 
The control strategy selected for evaluation is model based predictive control. This strategy 
incorporates prediction aspects with the receding horizon principle. This means that at every step 
the control inputs are selected in an optimal way over a given prediction horizon to maximize a 
given performance criterion. After every step the initial states of the system used for the 
prediction are reinitialized based on present measurements from the system.  
 
The MPC has the following advantages.  

- it can naturally account for constraints in the control inputs – such constraints are 
typically present in HVAC equipments and systems  

- it will naturally result in a better coordination between the system equipment such that 
the energy savings opportunity is maximized 

- the prediction capability will enable implementation of control inputs that are able to take 
advantage of the storage capability in the building envelope (or in general any storage 
capability that is represented in the system models).  

 
In order to evaluate the potential benefits associated with the implementation of selected control 
algorithm we first selected a tool chain for control implementation. Section 3.2.1 outlines the 
selection procedure that has been used to identify suitable tool chain that enables control 
implementation and future developments relative to a scalable control deployment. 
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3.2.1 Tool Chain Selection  
Our objective was to increase the flexibility of the control development tool chain used in BP1 
by integrating a modeling and computation tool in the MPC-based design and testing framework 
that will provide reduction of design-to- commissioning time.  
The specifications requirements for the desired tool are:  

- include automatic differentiation tools to support overhead computation requirements;  
- support interfaces with sophisticated state-of-the-art numerical solvers to provide 

computation time scalability for larger optimization problems associated with 
increased complexity of building and HVAC model dynamics;  

- has been extensively tested in academic research and industrial settings. 
Refined selection criteria are as follows 

- Include tools that provide optimization capability (i.e. optimization solvers) suitable 
for applications in the area of buildings and HVAC systems 

- Rapid prototyping with minimal coding efforts – automatic differentiation tools 
available 

- Ease of integration with  
o Building management system (BMS) through HUB software services platform 
o Simulation environment for energy performance evaluation (i.e., TRNSYS) 

- Flexibility to easily change  
o The optimization problem formulation 
o Dynamical models that characterize the building and HVAC dynamics 

- Reliable, supported and tested in industrial applications 
- Cost 

The following table outlines the tool chain options that have been considered for selection. 
 

Table 3.2.1: Tool chain options for optimization based control development 

 Option 1  Option 2  Option 3  

Solver  IPOPT  IPOPT  TOMLAB solvers  

Automatic 
differentiation tool for 
gradient, jacobian, 
hessian computation  

AMPL  ADOL-C  TOMLAB  

Optimization problem 
formulation language  

High level 
mathematical 
language 

Problem formulation 
code in C++ 

High level 
mathematical 
language 

Problem scale  Well tested on large 
scale problems 

Performance on 
large scale problems 
is not verified  

Well tested on large 
scale problems 

Integration with 
optimization solvers  

Integrated with 
multiple solvers 

Requires C++ code 
to interface with 
solvers  

User interface and 
Integrated solvers  

Flexibility to fast 
prototyping and 
testing of design 
control performance  

Allows fast 
prototyping and 
testing  

Code has to be 
developed if changes 
are made in the 
problem specification 

Allows fast 
prototyping and 
testing  
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– slow prototyping 
and testing  

Integration  Default data transfer 
through files results in 
communication 
overhead  

Tight integration 
results in fast 
communication 

Available 
functionality to 
support information 
transfer  

Coding language  AMPL  (mathematical 
description) 

C++   

Cost  4000$/license  Free, open source  ~12000$/license  

 
Based on the comparative study of the available tools, assessment presented in Table 3.2.1, we 
selected for integration A Modeling Language for Mathematical Programming (AMPL (Fourer 
et al., 1987)) to be used as an optimization platform.  
 
Figure 3.2.1 describes the functional structure of the optimization tool. This structure allows for 
a fast and efficient computation of optimization solution, due to integration with automatic 
differentiation tools (to compute online the value of the Gradient (G), Hessian (H) and Jacobian 
(J) matrices needed by the optimization solver) and solvers (e.g. IPOPT), and offers the 
flexibility to extensions , fast implementations and evaluations of performance for different 
problem formulations.  
 

 
Figure 3.2.1 Structure of selected optimization tool to be included in MPC framework 

 
3.2.2 Description of Selected Tool Chain  
Figure 3.2.2 illustrates the software architecture for optimization-based building control which 
integrates  

- TRNSYS as a virtual testbed,  
- MATLAB® (MATLAB, 2012) as a data acquisition and organization interface and  
- AMPL® for solving optimization based control problem.   
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Figure 3.2.2 Integrated tool chain for optimization based building control algorithm development, 
testing and performance evaluation in simulation 

 
Developed at Bell Laboratories, AMPL is a comprehensive and powerful algebraic modeling 
language for linear and nonlinear optimization problems, in discrete or continuous variables. 
AMPL's flexibility and convenience render it ideal for rapid prototyping and model 
development, while its speed and control options make it an especially efficient choice for 
repeated production runs. 
 
The integration of AMPL in the control development framework leads to:  

- increased development flexibility to reduce design-to-commissioning time and  
- computation time scalability to larger optimization problems associated with  increased 

complexity of building and HVAC model dynamics. 
The closed loop designed for optimization based energy management for building and HVAC 
equipment with can be described by the following operation steps that are executed at every 
sampling step 

- Read data from the installed building and equipment sensors and store values in the 
BMS 

- Use available services platform (middleware) to  
o communicate with the BMS,  
o retrieve data and  
o organize data according to the requirements specified by the input interface 

defined by the optimization platform (AMPL and solver) 
- Call optimization solver to solve the specified optimization problem 
- Use available services platform to  

o post-process the optimization solution and  
o communicate the supervisory control setpoints back to the BMS 

- BMS implements the received setpoints for supervisory control and the computed 
actuation for the HVAC actuators.  

 
When integrating this functionality with a building simulation environment the role of the 
building dynamics, sensors and actuators and local equipment control is taken by a building 
simulation. Specifically, in the developments outlined in the following sections of the EEB Hub 
project report we used TRNSYS to simulate the building envelope and HVAC equipment 
dynamics, sensors, actuators and local controllers, i.e. we used the TRNSYS simulation of the 
building as a virtual testbed.  
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In a simulation environment the role of the services platform is taken by MATLAB which serves 
as an interface between the TRNSYS virtual testbed and the AMPL tool that implements the 
optimization based control algorithm. 
 
3.2.3 Development of Control Algorithm  
In this section we outline the development, implementation and the elements of the optimization-
based control algorithm.  
 
3.2.3.1 Considerations on HVAC System Architecture and Selection of Decision Variables 
The HVAC architecture in Building 101 is AHU + VAV configuration. The control variables are 
as follows. 

- VAV damper position, DP – we assume a one to one mapping between damper 
position and mass air flow at the VAV outlet 

- VAV valve position, RHV – we assume a one to one mapping between valve position 
and water flow through the available VAV reheat coils. This ideal assumption can be 
relaxed in practice by selecting VAV discharge air setpoint, as that can be controlled 
by the valve actuator using a local equipment controller.   

- AHU discharge air temperature setpoint, . 
 

Figure 3.2.3 presents a schematic representation of the integration of building and HVAC system 
models with the MPC algorithm. Specifically, the MPC algorithm receives “measurements” of 
the zone temperatures and outside air temperature (uncontrolled disturbance) and uses 
optimization tools to calculate the control inputs based on an internal representation of the 
system dynamics, i.e. building and HVAC equipment models. 

 

 
Figure 3.2.3 Control integration with building system  

 
3.2.3.2 Cost Function Selection and Formulation of Constraints 
The control objective considered herein is to minimize energy consumption used for air 
conditioning such that the occupant’s thermal comfort is satisfied. These are conflicting 
objectives which would place the optimal solution in a saddle point. 
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The control variables are calculated at every sample time step such that, over the prediction 
horizon, the following power cost function is minimized.   
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The first term in Eq. 3.2.1 represents the power consumption of the AHU fan, the second term 
represents the power consumption associated with cooling, while the third term represents the 
power consumption associated with reheat at the VAV box level. The coefficients “3” for 
electricity consumption and “1” for steam consumption are determined based on the general 
assumption for converting primary energy source to electricity and steam, respectively. Using the 
selected tool chain, the optimization problem can be easily modified to include the demand 
charge, different pricing for the various energy sources, or real-time utility price. An example 
AMPL code for cost function and constraints implementation is provided in the Appendix 3.2 
(Figure A.3.2.1).  
 
The requirement associated with occupancy comfort most often is expressed in the form of hard 
constraints on zone temperatures. For example one would say that zone temperature must be 
larger than lower bound and smaller than the upper bound in the comfort zone. This way of 
posing constraints should not be transferred directly to the specification of the optimization 
problem as it often leads to the optimization solver being unable to find feasible solution. In 
order to avoid such situations, and pose the optimization problem such that it will always allow 
for feasible solution, we integrate the zone temperature constraints requirements (and the limited 
available control authority) in the cost function. To achieve this we define: 

- A slack variable that describes the distance between the zone temperature comfort 
band and the measured/predicted value of the zone temperature 

- A slack variable that describes the variation between two consecutive values of 
control inputs  

We integrate the slack variables in the cost function that defines the optimization objective. In 
order to ensure that maintaining comfort will have a large priority over the energy consumption 
terms we use a large weight on the comfort term. This will lead to enforcing that occupancy 
comfort will be met and the optimization solution will have a high tolerance to energy consumed 
to maintain comfort. Slack variables defined on zone temperature will become equal to zero 
when (predicted) zone temperature is within the prescribed comfort bounds. 
 
3.2.3.3 Selection and Calibration of Models for Optimization Based Supervisory Control 
Decision 
The dynamics of the system, namely building thermal dynamics and HVAC equipment 
dynamics, are included in the optimization problem as constraints. This means that while 
predicting and optimizing the system behavior, the system dynamics will have to be satisfied. In 
order to determine these constraints one needs to spend an effort to find suitable models that can 
capture and represent the system dynamics as observed in the controlled plant (building and 
HVAC). In this section we present an outline on the required models and modeling approach that 
we selected for MPC based controller design.  
 
For MPC implementation two models are required  

-  Zone thermal model 
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-  HVAC equipment models 
 
Engineering practice provides evidence that the zone thermal model is characterized by large 
time constants relative to those that describe the HVAC equipment. Given the effective time 
scale separation we decided to use dynamical models for representing the zone thermal dynamics 
and use quasi-steady state performance maps to capture the behavior of the HVAC equipment. 
We outline next the procedures that we used to select and calibrate the building and HVAC 
equipment models.  
 
In this simulation based study, the zone thermal model has been obtained using system 
identification procedure on data acquired from the TRNSYS virtual testbed. When transitioned 
to practice, this procedure will only change at the level of data acquisition. To support 
computational efficiency but not sacrifice prediction accuracy we went through a procedure of 
down selection of models for zone thermal dynamics such that model complexity is reduced but 
the prediction accuracy is still maintained.  
 
The standard procedure for estimation of zone model parameters from data is outlined in Figure 
3.2.4. 

 
Figure 3.2.4 Procedure for estimation of zone thermal model from data measurements 

 
The control inputs for the zone thermal model are the two decision variables,  

- supply air flow setpoint of each VAV and  
- reheat valve position of each VAV 

as well as the main disturbance (typically measured in the building) that affects the zone thermal 
dynamics  

- the temperature of outside ambient air. 
If measurements of solar and internal gains are available they could be included too as inputs of 
the zone thermal model. In order to evaluate the potential for energy savings in case that the 
model based predictive control algorithm is implemented on a simple, reduced cost, building 
control retrofit we currently did not assume available information related to the building internal 
load or solar load.  The online estimate of lumped internal load for predictive-based controller 
design is an ongoing effort through the BP3.  
 
For the HVAC equipment we considered static curve models that can capture the performance of 
the equipment during steady state operation, i.e. around a given operating point described by the 
specified setpoints from the supervisory controller. The following models have been included in 
the MPC problem formulation. Please refer to Section 2.5 for more details. 
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- DX coil COP model – defines the coefficient of performance (COP) of the DX coil 
equipment given the percentage thermal load that the coil must satisfy3;  

- VAV reheat coil model – defines the value of the supply air temperature to the zone 
given the supply air temperature received from AHU and the mass air flow. 

- Fan performance curve for energy consumption given mass air flow.  
 
We note that in order to achieve a control design that can take advantage of the storage capacity 
available in the building envelope and that can minimize the energy consumption used by the 
HVAC equipments, the system models must capture only the dynamics that are relevant to 
equipment coordination and thermal storage in the building envelope.  
 
3.2.4 Simulation Study  
In this subsection we present the control results that have been obtained and discuss the 
performance assessment of the control implementation. 
 
3.2.4.1 Simulation Scenario 
Simulation studies were conducted to evaluate the effectiveness of the proposed centralized MPC 
controller. The high-fidelity TRNSYS model was adopted as our virtual testbed. A summer 
period was considered for the case study. A TRNSYS simulation was performed over five 
weekdays in the first week of August, 2012. Similar to the study of the data-driven modeling 
approach, the virtual weather data from 2011 (Weather Analytics, 2012) was used in the 
simulation.  
 
Figure 3.2.5 shows the ambient temperature and relative humidity profiles during the simulation 
test week. The internal loads from each zone are assumed to come from the occupancy, lighting 
and plug, etc, as shown in Figure 3.2.6. Note that the internal load profiles (occupancy, lighting, 
and plug) are assumed to be the same for each day during the test week (weekdays). 

                                                 
3 Note that the COP of our current DX coil model is assumed to be a function of the thermal load only, which may 
not be sufficient enough to represent the actual system operation. Future study will adopt a more realistic gray-box 
model developed by the Purdue team and validated with measurement data. 
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Figure 3.2.5 Ambient temperature and relative humidity of the test week 

 

 
Figure 3.2.6 Occupancy pattern (normalized), lighting, and plug loads 

 
3.2.4.2 Simulation Results 
Figure 3.2.7 presents the temperature profile of each zone controlled by the baseline and the 
MPC, respectively. As can be observed, the centralized MPC controller is trying to regulate the 
temperature in each zone tightly around the upper bound of the thermal comfort region (dashed 
lines in Figure Figure 3.2.7) and meanwhile exploiting the trade-offs of DX coil discharge air 
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temperature (DAT) setpoint, VAV flow rate setpoint, and VAV reheat coil valve positions to 
optimize the combined energy-and-comfort based costs. 
 
As described in Section 2.5, the baseline controller will either adjust VAV reheat valve position 
with minimum supply air flow setpoint when the zone temperature is below a prescribed heating 
setpoint or adjust supply air flow setpoint with reheat valve closed when the zone temperature is 
above a prescribed cooling setpoint. The supply air flow setpoint will be kept as minimum with 
reheat valve closed if the zone temperature could be maintained between the heating and cooling 
setpoints (i.e., no feedback control). 
 
By comparison, as shown in Figure 3.2.8, the MPC controller is taking advantage of the 
integrated subsystem information and coordinating the control setpoint of VAV air flow setpoint, 
reheat coil valve position, and DX DAT setpoint to regulate the zone temperature tightly around 
the upper bound of the comfort interval, and meanwhile exploiting subsystem level trade-offs to 
optimal the overall HVAC system performance in terms of energy savings.  
 

 
Figure 3.2.7 Comparisons of zone temperature profiles between baseline and MPC 
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Figure 3.2.8 Controlled variables from MPC  

 
Figure 3.2.9 shows comparisons of energy consumption breakdowns between the baseline 
control and the MPC. The system with the proposed MPC strategy demonstrated ~17.5% energy 
savings for the HVAC system. It can be observed that most of the energy savings come from 
reduced electrical energy savings for the compressors within the DX unit. 
 

 
Figure 3.2.9 Comparisons of energy consumption breakdown between baseline and MPC 
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Figure 3.2.10 illustrates the main reasons for energy savings brought by the MPC. Compared to 
the baseline control, the discharge air temperature (DAT) setpoint is higher during the whole test 
week, which brought significant savings for the direct expansion (DX) unit power, as shown in 
the lower subplot of Figure 3.2.10.  

 
Figure 3.2.10 Comparisons of DAT setpoints and DX unit power between baseline and MPC 

 
3.2.5 Conclusions and future work 
In this case study, we have demonstrated an effective and efficient tool chain for optimization-
based control development and implementation, as well as the effectiveness of centralized MPC 
control strategy through its application to a multi-zone building system with a central HVAC and 
multiple VAV boxes (w. reheat coils). In particular, we have evaluated the effectiveness of our 
proposed low-order state-space model, which demonstrated superior performance in the closed-
loop control scenarios with a relative short prediction horizon of one hour. With our high-fidelity 
virtual testbed, we demonstrated a promising overall HVAC energy savings of ~ 17.5% and 
observed that most energy savings come from the DX coil unit. This study can be further 
extended and a few suggestions for future study are summarized as follows: 

 Real-building demonstration of Buidling 101 in 2013 Q1. 
o The BMS upgrade of Building 101 will be completed by January 2013. After this, 

we will evaluate the effectiveness of the proposed MPC controller for real-
building scenarios. 

 MPC performance with uncertain internal load profiles. 
o Currently, the internal load (occupancy, lighting, plug, etc.) profiles are assumed 

to be exactly the same for each day. However, such assumption is not valid for 
real-building case study. We will study the effect of such uncertainties and 
possibly their prorogations in the prediction range of interest and evaluate their 
impact to the MPC controller performance. 
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 MPC Performance Analysis using B101 ROM – to evaluate the benefits of longer 
prediction horizons. 
o In BP2 UTRC implemented MPC for the linear B101 - ROM developed by the team 

from Purdue. The implementation has been done in MATLAB®/Simulink® 
environment in order to evaluate the performance potential of the MPC strategy 
coupled with the reduced order model of the building envelope dynamics. Based on 
the results the UTRC team provided the following recommendations. 

1) ROM must be obtained after reducing the fast dynamics of the building to 
steady state behavior; this will allow for a MPC formulation with lower 
sampling rates. 
 Maintaining the fast dynamics in the ROM leads to the requirement of 

fast sampling rates and large number of steps in the MPC prediction 
horizon and longer time for obtaining the optimization solution.  

 Note: for control implementation it is required that solution computation 
time must be smaller than the sampling rate. 

2) Lower sampling rates are needed in order to  
 take advantage of the building envelope as a storage and  
 allow for MPC computation time in case of longer prediction horizons 

(if possible > day). 
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3.3 Purdue Living Lab Simulation Based MPC Study 
The computational cost of applying model-based predictive control (MPC) grows significantly 
with increasing complexity of the system causing issues in the real-time implementation and 
feasibility of MPC. The objective of this study was to develop an efficient approach for MPC in 
order to enable practical implementation for multi-zone buildings where there are significant 
degrees of freedom for system supervisory control variables, including both plant and multi-zone 
air temperatures set points. A method that decouples the plant and building analyses was 
investigated since the plant dynamics occur on a relatively small time scale compared to the 
dynamics of the building. Also, a state-space transformation-based technique was applied to 
determine a reduced-order model that is more amenable to control optimization.  Results are 
presented for some case studies using a simulation test bed. 
 
3.3.1. Introduction 
For the last two decades there has been a growing interest in applying Model-based Predictive 
Control (MPC) for reducing electrical energy usage and costs for operation in buildings. For 
instance, experimental tests showed that up to 10% of the electrical energy could be saved for a 
relatively lightweight building through dynamic control when utilizing thermal storage inherent 
within the building mass (F.B. Morris et al, 1994). 
 
Many approaches have been suggested for taking thermal comfort into account for the MPC 
problem.  Examples of comfort level metrics include zone air temperature, mean radiant 
temperature and relative humidity.  Comfort metrics can be either introduced explicitly into the 
objective function resulting in a multi-objective optimization problem or implicitly in the 
state/output constraints. One simple approach is to introduce linear or quadratic penalty functions 
into the objective function so that the costs increase when the comfort conditions (e.g., 
temperature) deviate from given acceptable comfort ranges. Sometimes the acceptable thermal 
comfort levels are treated as constraints. Other comfort level metrics that incorporate the 
important indoor environmental parameters are the predicted mean vote (PMV) and percent 
people dissatisfied (PPD). In this study, Fanger’s PPD model is used to express the complex 
nature of thermal discomfort. This model can be included in the objective function or implicitly 
as a constraint.  
 
An important issue in terms of applying MPC is that the computational cost grows significantly 
with increasing complexity of the system. By neglecting plant dynamics, a method which 
decouples the plant and building analyses can be applied to reduce the computational cost. This 
approach was introduced by J.E. Braun (1990) and was investigated by M. Kararti et al. (1995) 
for the evaluation of optimal control for ice storage systems. It can also be found in several other 
works, including L. Lu et al. (2005), K.F. Fong et al. (2006), and A. Kusiak et al. (2010). In the 
current paper, plant and building decoupling is utilized to enable MPC for buildings.   
To further tackle the computational cost issue, we propose to use model-order reduction as 
described by D. Kim and J.E. Braun (2012) to characterize the building dynamics. Most of the 
previous strategies to handle complex building thermal networks for optimal control are based on 
system identification methods. Data-driven black box models, which rely on experimental data 
or simulation results from a physical model, can lead to unrealistic and non-interpretable 
predictions (J. Casillas et al. 2003). Furthermore, one of the most important and difficult 
problems in system identification is to choose the “best” model among a set of candidate models, 



January 2013 

99 
 

which necessarily requires a “model validation” process (L. Ljung, 1999). Typically up to 80% 
of the time for determining a model is spent on this step. The approach presented in this paper 
for generating a reduced-order building model is based on a physical description and may lead to 
a more reliable model that is more easily obtained. 
 
3.3.2. Simulation Methods 
The main assumptions adopted in this study are summarized as follows.  

 In the cost function, we only consider the electrical power consumption from fans, 
pumps, and chillers, but not from other sources such as lighting and electric heaters. 

 Forecasts of weather and internal loads are assumed to be perfect. 
 Constant convective heat transfer coefficients at the interior surfaces are assumed.  
 Relative humidity and CO2 level of the zone are not considered.  
 Local controllers are ideal such that all feedback controllers follow set-points exactly 

unless limited by capacity.  
 The plant operation is quasi-static and contains no dynamics. For this case study, the 

plant-side energy storage effects are assumed to be negligible compared to the building 
thermal mass effects. A careful investigation of the accuracy and validity of this 
assumption will be considered in the future.  

 Only time-of-use energy charges are considered with no demand charges. 
 
Objective Function of Model Predictive Control 
For this study, the cost of electricity is assumed to vary with time but in the absence of any 
demand charges.  The utility cost is given by  

 

where [ ]R k is the electric rate [$/kWh] for any time step k and [ ]P k is the power consumption 
for the HVAC system at that time step.  
In this study, Fanger’s PPD model (1967, 1980) is used to express the complex nature of thermal 
discomfort. PPD is the percent people dissatisfied and Fanger’s model uses predicted mean vote 
(PMV) as the input to this model.  The PMV model that uses six input variables: zone air 
temperature, relative humidity, relative air velocity, mean radiant temperature, activity level, and 
insulation value of the clothing. PMV values range from -3 (cold), to +3 (hot) with zero as the 
desirable value. The PMV-PPD model is widely used and accepted for design and field 
assessment of comfort conditions. 
 
The objective function used in this study is expressed as 

 
with the constraints   
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The value 10 comes from the ASHRAE Fundamentals and corresponds to a PMV range of  ±0.5. 
The value of 30 is chosen to correspond to “slightly warm” or “slightly cool” according to the 
PMV index.  
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The evaluation of PPD requires solving nonlinear algebraic equations, which could be a burden 
for the MPC problem. Therefore, in an effort to reduce computational cost, a regression method 
is adopted. The independent variables are zone air temperature and mean radiant temperature, 
which together determine the PPD value for the assumptions previously specified. The 
regression model is as follows 
 

2 2

0 1 2 3 4 5

3 3 2 2

6 7 8 9

z MRT z MRT z MRT

z MRT z MRT z MRT

PPD T T T T T T

T T T T T T

     

   

  

 

   

   
     (3.3.2) 

  
 
Figures 3.3.1 shows that the regression model tracks the Fanger’s predictions of PPD over the 
input range of interest. The scattered points represent the Fanger’s values and the continuous 
color map indicates the regression-based model. 
 

 
Figure 3.3.1  PPD comparison between regression and Fanger’s model results (50% RH, less 

than 0.2 m/s air velocity, 0.5clo and unit Met) 
 
Plant Decoupling Approach 
A schematic of the simple cooling plant considered in this case study is shown in Figure 3.3.2. It 
contains an outdoor air (OA) damper, cooling coil, chiller, cooling tower and pumps. The model 
assumes that the components in the system operate at quasi-steady state. In this study, variable-
speed cooling tower fans, pumps and supply air fans were considered. Heat transfer through air 
ducts and pipes are neglected and zone loads are met by control of the supply air to the space 
(termed mechanical ventilation).  The plant equipment models and performance characteristics 
are based on representations from EnergyPlus and are described in a later section. 
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Figure 3.3.2 Schematic diagram of the considered cooling plant 

 
The MPC controller provides set points to the local controller of the HVAC system based on 
zone air temperature, mean radiant temperature and predictions of weather data and internal 
sources. The number of setpoints that need to be determined by the optimizer of the MPC has a 
large effect on the computational requirements and feasibility of implementation. The concept 
employed here to solve this problem is to decouple the building and plant system. If the dynamic 
behavior of the plant is neglected, then the optimal set of cooling plant setpoints is not affected 
by any past information but only depends on current conditions. Therefore, an optimal plant map 
can be generated as a function of zone air temperature (Tzone), outdoor air temperature (TOA), 
ambient relative humidity (RH), and mechanical cooling at the zone (Qvent) and used as a lookup 
table for the MPC algorithm to determine the tracking of zone cooling that takes optimal use of 
the building dynamics.  This is the strategy that is proposed and employed within this case study. 
The plant optimization problem involves finding the optimal set-points that give minimum power 
consumption for a given heat extraction rate, Tzone, TOA and RH at any given time or 
min ( , ,, , , , , ),OA sup CW CHWS CWS OA zone ventm m T T T RH TPower m Q
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The optimal plant solution then can be mapped in terms of the input variables according to 
 

* ( , , , )
min OA zone vent

P T RH QTP 
            (3.3.4)   

 
The bounds of A to N in equation 3.3.3 are defined by the HVAC system.  The MPC wants to 
find a trajectory for ventQ   rather than a single point value while the optimal map provides optimal 

plant set points at any time given conditions for , ,zone OAT T RH  and ventQ . There are several 

difficulties in obtaining an optimal look-up table. The objective function for HVAC plants may 
be non-convex and contains several nonlinear algebraic equations; it is difficult to generate 
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proper constraints; and there may be several discrete modes of operation that cause 
discontinuities. In particular, the design variables must be in a feasible region in the optimization 
process. For example, the supply air temperature must be greater than the chilled water supply 
temperature by an amount dictated by the capacity of the coil and operating conditions.  These 
types of constraints are difficult to handle without validated models for each of the components. 
A global optimization algorithm with an interior barrier method was employed in this study for 
the plant optimization.  The validity of the results was tested by considering limiting cases with 
known solutions, such as when the only plant power is associated with the chiller.    
 
Cooling Plant Model 
The variable-speed cooling tower fans and pumps are modeled with a cubic relationship between 
power consumption and flow rate (pump and fan affinity law). For the VAV fan used to supply 
air flow to the zone, the fan power is modeled as outlined in ASHRAE 90.1.  

2 3
0 1 2 3fan fan fan fanP a a PLR a PLR a PLR          (3.3.5) 

 
At this point in our study, latent energy removal effects are neglected for the cooling coil.  Also, 
heat gains to air ducts and pipes are neglected.  The effectiveness-NTU method is used for the 
cooling coil to determine the limiting heat transfer rate. 

0.22 0.781 exp[ [ ] 1
1

]{ }r

r

NTU exp C N
C

TU   

      (3.3.6) 
where Cr  is the ratio of the minimum to maximum capacity rate (F.P. Incropera and D.P. Dewitt 
2001). Energy and mass balance equations are then used to determine temperatures, cooling coil 
load (QCCL) and  chiller load (QCHL). 
 
The empirical model employed in EnergyPlus is used to determine chiller cooling capacity, 
energy efficiency, and power consumption as a function of chilled water supply temperature, 
condenser water supply temperature, and part-load ratio  (M. Hydeman and K.L. Gillespie 2002). 
The cooling tower model is also referred to EnergyPlus and represents a York cooling tower. 
 
Reduced-Order Building Model 
A reduced-order building envelope model was built based on the procedure described by D. Kim 
and J.Braun (2012) and summarized here. A finite-volume formulation is used to describe the 
heat conduction through walls. For any outside wall belonging to an individual zone, a heat 
balance equation is applied considering convective heat, solar radiation and long wavelength 
interactions. The radiosity method is utilized to express the net flux under the assumption that the 
walls are gray, diffuse and opaque. The long-wave interaction terms were linearized and fixed 
convective heat transfer coefficients were assumed to build up a linear time invariant state-space 
form for the building thermal network. A balanced truncation method is applied to the 
representation to generate a reduced-order model. An important feature of the state-space 
transformation method is that the reduced-order model preserves most of the properties of the 
original system such as dynamic response, observability/controllability and stability. The final 
form of the reduced-order building system is shown below. 

 

w uw Bx A u

y Cx

x B  




       (3.3.7) 
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The controllable input, u, includes the heat extraction/addition rate to the zone air and the 
possibility of having a heat source inside a building material. It could represent mechanical 
ventilation, an electric heater, chilled beams or radiant heating /cooling. For this case study, it is 
assumed that only mechanical ventilation is available as the controllable input. w represents 
several uncontrollable terms, including the heat flow due to solar radiation, long-wave 
interaction between sky/ground and exterior walls and uncontrollable internal heat gains due to 
occupants and so on. The output y is chosen to be the zone air and mean radiant temperatures 
that are inputs to the PPD model. Surface weighted average temperatures are used to 
approximate the mean radiant temperature.  
 
MPC Controller Setup 
The MPC problem for the case study considered here is expressed as 

     (3.3.8) 
where  represents all the set-points in the quasi-static HVAC plant for this study: 

 flow rate of supply air and outdoor air 
 flow rate and temperature of chilled water 
 flow rate and temperature of condenser water 

The arguments of the minimum are the vector input sequences of u and v , i.e.,  
{ [ | ], [ 1| ],..., [ 1| ]}pu k k u k k u k N k  

  
and  
{ [ | ], [ 1| ],..., [ 1| ]}pv k k v k k v k N k  

. 
In words, the goal is to find the optimal trajectories that minimize the energy costs while keeping 
the thermal comfort level within specified bounds. 
 
For each prediction time step, [0, 1]k N  , PPD is calculated using the regression model. The 
power consumption of the plant is a function of the cooling load, room air temperature, and 
ambient conditions and is represented as , , )( , 0k k k ku vf y w  . To handle nonlinearities associated 

with the plant model, a Sequential Quadratic Programming (SQP) optimization algorithm is used 
to solve the optimal control problem.  
 
3.3.3. Case Study Results 
The zone considered in this case study is the Purdue Living Lab #1 that is part of the building 
shown Figure 3.3.3.  Some parameters employed in the modeling include: 
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Figure 3.3.3 Purdue Living Laboratory schematic 

 
 The size of the building: 32 ft for width and depth and 14.5 ft height.  The south window 

area is 130 ft2. 
 The materials for wall construction consist of concrete, insulation board, stucco, gypsum 

board, and double glazed windows. 
 The east, north walls and floor are adjacent to other rooms that are assumed to be at fixed 

zone air temperatures of 22 ºC.  
 TMY2 weather data in Indianapolis for the summer season (July/1 to July/31) is used. 
 17.77 W/m2-K and 3.05 W/m2-K are used for convective heat transfer coefficient at the 

outside and inside surfaces, respectively.  
 65 Watt per person, 230 Watt per computer and 20 Watt/m2 are assigned for the internal 

gains during the office hours (7am ~ 6pm).  
 20 persons with 20 computers occupied the space during office hours. 
 Electricity rates of 0.04 $/kWh for office hours (7am ~ 6pm) and 0.02 $/kWh for other 

times are employed.  
 
The baseline state-space model was applied to the Living Laboratory zone and then model-order 
reduction was performed.  The baseline model employed 201 states and the model order was 
reduced to 10 states with about a factor of four reduction in the computational requirements.  
Figure 3.3.4 shows a comparison of zone temperature variation with a PID controller in place for 
the baseline and reduced-order models.  The zone temperature responses are very similar and 
lead to near identical time variations in zone loads.  More detailed analyses will be performed in 
future work to better understand any limitations of the reduced-order model for this case study.   
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Figure 3.3.4 Example model comparisons between baseline (full-order) state-space and 
reduced-order models under PID control on July 22nd and 23rd (To and Qo are zone air 

temperature and load for baseline state-space model, Tr and Qr are zone air temperature and 
load for reduced-order model)  

 
The cooling plant was scaled to meet the peak load requirements for the Living Laboratory zone 
and an optimal cooling plant model was generated which was used within the MPC formulation 
for this case study. The MPC optimization algorithm generates an optimal sequence of 
{u[k],u[k+1]..u[k+Np-1]} over a prediction horizon [k, k+Np] and only the first part of the 
sequence, u[k], is applied to the building model. For the next time k+1, the same procedure is 
applied with the initial guesses of the pre-calculated {u[k+1],u[k+2],.., u[k+Np-1]}.  A 24-hour 
prediction horizon was used to capture the usage of thermal mass in the building structure and a 
15-minute prediction time step was adopted.  
 
Figure 3.3.5 shows sample MPC results for a day in July.  The time-of-use energy charges 
provide incentive for the MPC to apply precooling prior to the occupied period.  The optimal 
trajectory satisfies the constraints of PPD within 10% during occupied hours and 30% during 
unoccupied hours.  After precooling prior to occupancy, the PPD is maintained at the upper limit 
of 10% to minimize energy consumption since the high energy rates are coincident with the 
occupied period.  This level of PPD corresponds to a zone air temperature setpoint during 
occupancy of around 25 C for summer clothing levels. It is interesting to note that the difference 
between the zone air and mean radiant surface temperatures reaches a maximum at the occupied 
period due to precooling.  Further, the mean radiant temperature is always lower than the zone 
air temperature during occupancy implying that energy storage in the wall surfaces is acting to 
reduce the load.  This difference tends towards zero by the end of occupancy implying that the 
MPC is attempting to make full utilization of the energy storage.  Another interesting point is 
that the optimal zone air temperature peaks at the beginning of the occupied period and decreases 
over time. This is a result of the use of PPD as the cost constraint.  The lower mean radiant 
temperature at the beginning of occupancy allows use of a higher zone temperature to achieve 
the same comfort level as compared with the higher mean radiant temperatures experienced later 
in the day.  Higher zone air temperature setpoints lead to energy savings because of reduced 
loads.   
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It is also interesting to note that precooling includes both mechanical and ventilation precooling 
because the ambient temperature is lower than the zone temperature prior to occupancy but not 
cool enough to provide the level of cooling needed to minimize total daily operating costs.  Plant 
power consumption peaks near the end of occupancy because of the higher ambient temperature. 

   
Figure 3.3.5 Example MPC results for July 22 

 
3.3.4. Conclusions 

The objective of the case study outlined in this paper is to provide a means for implementing 
MPC in buildings where there are significant degrees of freedom in terms of HVAC supervisory 
control variables. We have avoided making assumptions that are solely based on reducing the 
computational load but that would affect the accuracy of the results, such as constant plant COP 
of plant and or only including air temperature in thermal comfort evaluations and constraints. A 
method which decouples the plant and building analyses is utilized based on the fact that the 
dynamics of the plant occur on a relatively small time scale compared to the dynamics of the 
building. For a 24-hour time horizon with 15-minute time steps, this approach reduces the 
number of optimization variables from 671 (7 plant control variables, 24-hour prediction horizon 
with 15-minute time steps) to 96. Also, a state-space transformation-based technique is applied 
to determine a reduced-order model that is more amenable for controller design and 
optimization.  
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3.4 MPC Approaches and Algorithms  
As noted by Rawlings and Mayne (Rawlings and Mayne 2009): 
 

“Model predictive control has its roots in optimal 
control. The basic concept of MPC is to use a dynamic 

model to forecast system behavior and optimize the 
forecast to produce the best decision – the control move 

at the current time” 
 

The successful implementation of this idea requires a dynamic mathematical model that can 
simulate the future behavior of the system with acceptable accuracy. In particular, it may be 
necessary to incorporate estimates of the future disturbances applied to the system. Secondly, we 
must be able to ‘solve’ the resulting optimal control problem quickly and accurately so that the 
required control value is available in a timely way. Thus, it is of interest to study the underlying 
control problem(s) and their numerical solution. 
 
3.4.1 Optimal Control Formulations 
In this section we consider several optimal control formulations for energy/cost-efficient cooling 
of a simple, single-zone room. To focus ideas we consider a scenario with 

 exterior wall  
 thermal storage- high thermal capacitance features of the building interior 
 room air - temperature, occupied zones 

 
A notional view of the room is shown in Figure (3.4.1); thermal energy storage is modeled in the  
solid circles which depict the 

● wall interior temperature (  ) 
● storage temperature (  ) 
● room-air temperature (  ) 

Four energy exchange mechanisms are modeled: 
1. conduction through the exterior wall from  to  
2. radiant exchange between  and  
3. convection from  to  
4. convection from  to  

Ti

Ts

Ta

Ti Ta

Ti Ts

Ti Ta
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Figure  3.4.1 Notional View of Single Zone 

 
In summary, with the linearized model for radiant exchange the dynamics of our system can be 
written as 

      (3.4.1) 

where 
   
   

    (3.4.2) 

In Equation (3.4.1)  (the cooling rate for a given power input) is modeled as 

   

Here the function  represents the coefficient of performance and is a given positive 
function of the applied power ( ). Additional details of the model are discussed in the Appendix 
3.4. In the next section we formulate an optimal control problem for these dynamics. 
 
Optimal Control Problem 
Whereas the primary focus of our optimization study is minimal energy use, to avoid trivialities 
it is necessary to place some restrictions on the temperature histories. To this end we formulate a 
discomfort metric, namely 
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where 
 

   

 
and where c is a zero-one function, the characteristic function of the occupied time interval. 
 
In formulating the power cost we admit time-varying power rates and define our cost-functional 
as 

        (3.4.3) 

where r > 0 is a given function specifying the time-varying cost of power. The parameters 
 admit a trade-off of the power-cost and discomfort metrics. 

   
We anticipate that the exterior wall temperature , the power-rate , and the characteristic 
function  will be given over a 24 hour period and that the parameter  are given. We 

take (h) and seek periodic boundary conditions  and a control function  to 
minimize the cost (3.4.3) subject to the dynamics (3.4.1 – 3.4.2). 
   
Affine cop(u) 
We consider a case wherein 
   
Analysis (see the Appendix 3.4) shows that optimal controls are bang-bang and 
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Quadratic cop(u)  

We now consider a case wherein 
   
with data specifications: 
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   

  

 C  (u) |uU cop(U )U cop (u) |U 0   

 
From these specifications we find that: 

   

 Analysis of this case reveals that optimal controls can take the value zero (control off), or take a 
value in the range  ,U . It is never optimal to choose a control on the range U,   (see the 

Appendix 3.4). 
 
Computational Approaches:  
 
NLP Formulation (Affiine cop) 

The Maximum Principle has revealed that an optimal control takes only the values in  We 

assume there are N (a  finite-number) of switches ( i.e. no chattering junctions).  Of course, we 
do not know the value . As described in the Appendix 3.4, we assume that on the initial and 
final sub-arcs the optimal control has the same value ( ) and the number of switches ( N )is 
even. 
 
With this structure in mind we formulate a (family of) finite-dimensional nonlinear programming 
problem(s) (NLP) wherein the unknowns are the initial states and the switching times, the cost 
functional is  (3.4.3) and the equality constraints are the periodic boundary conditions, viz: 

. The parameter of the family of problems is N. We numerically solve the initial-

value problem (3.4.1 - 3.4.2 with the initial states), alternating between cooling-off  ( u*(t)  0  ) 

and cooling-on ( u*(t) U  ) sub-arcs as specified by the switching times. For this purpose it's 
important to ensure the switching times are monotone increasing; we impose a minimum 
separation time between consecutive switch times. In the NLP setting this is realized as a set of 
( ) linear inequalities.  
 
Two Cooling Periods:  
As an instance of an NLP formulation, we consider a problem with four switch points. The NLP 
problem has seven variables and three equality constraints (periodicity of the temperatures - 

 . The variation of power-cost with time-of-day is shown in Figure 3.4.2 

max
[U ,U ]

cop(u)  v 

argmaxcop  , 0 U   U .


 

2(v  )


 0 and  

(v  )

2  0 .

0,U .

N
u*  0

J
z(t f ) z(0)  0

N 1

N  4

Ti ,Ts,Ta
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Figure 3.4.2 Power Cost function  

 
A Matlab code was implemented and the active-set algorithm of fmincon (MATLAB, 2012) 
was used to solve the NLP problem. The NLP problem was numerically challenging; perhaps 
reflecting some issues in the dynamic model (comments later). We imposed a heavy weight on 
the discomfort metric ( ); 
   

The electrical power was limited to 20 w and produced a maximum cooling of 140 w which 

reduces the air temperature at 2.7 oC / h. The thermal capacitance of the air is relatively small, 

with 
Ci

Ca

 9  and  
Cs

Ca

10 . We conjecture that the relatively low control authority makes the 

periodicity requirements on Ts and  Ti  particularly challenging. 
 
One result is shown in Figure 3.4.3. The (solid) black line represents the 'exterior' temperature ( 
Te ); this is part of the problem data. The (dash-dot) red box defines the 'comfort constraint - the 
zone-air temperature (Ta - the (solid) red-line) is supposed to be in the box during the 'occupied 
time' (7.5 <= t <= 18.5). This specification is also problem data. The (solid) blue line is the 
interior wall temperature ( Ti  ); it is conductively coupled to the exterior temperature. The 
(solid) green line is the temperature of the storage mass ( Ts). Note that whereas the state 
histories Ti  and Ts are smooth, the history of Ta  is only piecewise smooth since it is explicitly 
driven by the (discontinuous) control. 
 
At t = 0, the interior wall temperature (Ti ) is the highest so it begins to decrease, while the 
storage wall temperature ( Ts) is lowest  and begins to increase. The air, initially at an 
intermediate temperature, exchanges energy with both of these elements and begins a slow 

(r(t))

D
p  1 and D  1.1004 .
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decrease.  At   t = 03:32 the control comes on and continues until t = 07:16;  Ta  is reduced to 

near the comfort lower bound at T  22oC.  Ti  , and Ts are also decreased toward local minima. 
As the exterior temperature ( Te ) rises the other temperatures are driven upward until at t = 13:05 
when Ta approaches the upper comfort bound. A second cooling period begins and lasts until 
20:34. Lastly, with the cooling off and the exterior temperature decreasing the variables 
Ti ,Ts andTareturn to their initial values. Cooling uses 224 wh of energy and the power-cost is 

0.4242 (units). The discomfort metric is quite small; D 1.1009 . Decreasing the weight D by 
several orders of magnitude has little effect on the state/control histories. With D 1 the state 

Ta begins to exceed the upper bound Tmax . 
  

 
Figure 3.4.3 Temperature histories with two cooling periods 

 
Five Cooling Periods: N=10 
Cases for three and four cooling periods are included in the Appendix 3.4. The results from the 
Four Cooling Period case were used to initialize a case with five cooling periods. In this case the 
final cooling period begins after the occupied period (see Figure 3.4.4) during the period of 
lowest power-cost (see Figure 3.4.2). Note that the (red) Ta  trajectory passes though the upper-

right corner of the comfort-constraint box. If the 8th  switch (off at t  17 :28) had been a little 
earlier, the zone-air temperature would have exceeded the upper-comfort bound; if it had 
occurred a little later additional high-cost cooling would have been applied. This result is 
perhaps from a different family of local minima than was seen in the earlier cases. It must be 
noted, however, that due to the minimum-switch-time constraint, the N  -family of NLP 
problems are not nested.  Thus, for example, an N  8 solution can not be trivially made feasible 
for an N  10 problem. 
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Figure 3.4.4 Temperature histories with five cooling periods 

 
Summary 
The performance attained in the four cases is summarized in Table 3.4.1;  switch times are 
summarized in the Appendix 3.4. We see that the additional cooling periods lead to sequentially 
lower power-costs but that the trend in energy-used is not monotonic. In these numerical results 
none of the minimum-time-spacing constraints were active. 
 
There is no claim that the NLP solutions presented here are actual minimizers. The optimizer 
stopped because the changes in the NLP parameters or the cost functional were sufficiently small 
(1004  ). We have not verified that any of the candidate switching sequences actually satisfy the 
Minimum Principle. 

Table 3.4.1 Summary of Results 
Cooling Periods Power-Cost Energy Used (wh) 

2 0.4241 224.1 
3 0.3561 224.6 
4 0.3246 217.0 
5 0.2819 203.9 

 
NLP Formulation: Quadratic COP 
For this discretization we impose a grid on the time axis; each state is approximated as a 
continuous, piecewise linear function whereas each control is a piecewise constant. A simple 
case is shown in Figure 3.4.5.  
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Figure 3.4.5 Generic State (Temperature) and Control Discretization 

  
The NLP unknowns are the state values at the nodal points, and the control values on the 
intervals. The differential equations (3.4.1 – 3.4.2) are (approximately) enforced by the 2nd   
order implicit midpoint rule.  Details and some numerical results are given in the Appendix 3.4. 
 
Max u 
We study an open-loop optimal control problem for energy efficient cooling of a simple room.  
The goal is to provide insights for the development of an implementable control scheme based 
on a Model Predictive Control strategy. In this version the cost function includes a term 
 F(maxt u(t)) 
that is, a term depending on the peak value of the control.  To study this problem the  upper-
bound on the control is no longer part of the problem data, but is an unknown to be determined 
as part of the solution process. Analysis of this problem is included in the Appendix 3.4.  In lieu 
of an explicit specification of the upper bound U  we find a necessary optimality condition: 

 

F  (U )  U0

t f

 (t) d t  pr(t)
a (t)

Ca

C (U )










t |u*(t )U d t .   (3.4.4) 

Equation (3.4.4) is the optimality condition for the control bound U  . 
 
Modeling of external disturbance  
As the name implies, Model Predictive Control requires a model for the future behavior of the 
system including, where appropriate, the behavior of any external loads. We have studied the use 
of an Internal Model to characterize important unknown heating loads. The discussion is framed 
in terms of the single-zone model (Fig 3.4.1)) modified to include an exogenous solar load on 
the storage mass. Details are in the Appendix 3.4. 
 
Our objective is to construct an estimate for the solar load based on measurements/ observations 
of Te ,qu , and ynoisy . To this end we create an augmented system consisting of the original closed-

loop system with three states augmented with an additional state(s) that model the solar load. 
According to the Internal Model Principle (Francis and Wonham 1975) the dynamic description 
of the augmented state should be compatible with the expected behavior of the disturbance. Our 
first model is the simplest. 
 
First-order lag: 
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In this case the additional state ( sd ) satisfies the ODE 
 
  sd (t)  sd (t)  
where   0  is selected so that the system is stable, but not too stable. We're thinking that the 
disturbance is constant, but not too constant! This formulation has been used by O'Neill et al., 
2010 in a multi-zone building. To formulate the associated Kalman filter we must specify noise 

covariances on all of the states, including sd . 
 
Second-order oscillator: 
Given the periodic nature of the solar disturbance, it might be preferable to choose an oscillatory 
model for the disturbance, viz 
 
 sd (t) 2  n sd (t) n

2 sd (t)  0 .  

Here we could exploit the known (nominal) period for the solar input, i.e.   n 
2
24h

 . 

We must also specify a value for the damping ratio 0  1 . 
 
Kalman filter 
For each  model  we construct a Kalman filter for the appropriately augmented system. The filter 
requires four inputs: 

1) the cooling load ( qu  )provided to the system, 
2) the external wall temperature (Te ) applied to the system, 
3) the noisy measurement of the storage temperature ( Ts), and 
4) the noisy measurement of the zone-air temperature ( Ta  ). 

 
First-order lag: 
The measured (noisy) values for the storage and zone-air temperatures along with the filtered 
values are shown in Figure 3.4.6 The transient in the filtered value from its initial-value  24C 
takes about 8 hours but then tracking is reasonable. 
 

 
 
Figure 3.4.6 Sensed and Estimated Temperatures, Storage (left) and Zone-air (right) 
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Our main result, the tracking of the solar-load, is displayed in Figure 3.4.7. Here we see that in 
addition to the initial transient, there is a lag between the true and the estimated values. It may be 
that additional tuning (e.g. adjusting the process noise value) can improve the results. 

 
Figure 3.4.7 Actual and Estimated Solar Loads (First-order model) 

 
Second-order oscillator: 
Here again we did some modest tuning of the parameters (process noise for the pair (sd, sd). In 
this case  (see Figure 3.4.8) there is a substantial initial transient but the eventual tracking is 
much improved over the first-order case. The results for smoothed estimates of Ts and Ta  are 
indistinguishable from the first-order case (Figures 3.4.6). 

 
Figure 3.4.8 Actual and Estimated Solar Loads (Second-order model) 

 
Conclusions: 
This preliminary study demonstrates that it is feasible to reconstruct unknown disturbance inputs 
based on measured data. Note that we do require an accurate model of the system, including the 
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vector that characterizes how the disturbance affects the system dynamics.  Note that we have 
assumed that the external temperature ( Te  ) is known exactly. 
  
 Using a first-order disturbance model results in a lag between the actual and the predicted solar 
loads. A second-order disturbance model produces better ultimate tracking, albeit with a large 
initial transient. The Internal Model Principle [Francis – op.cit.] suggests the use of higher-order 
models that better reflect the expected behavior of the disturbance. This extends the approach 
used in (O'Neill et al., 2010) 
 
Reference 

1. J.B.Rawlings and D.Q.Mayne, Model Predictive Control: Theory and Design, Nob Hill 
Publishing, Madison, WI, 2009 

2.  MATLAB. 2012. The MathWorks, Optimization Toolbox, 
http://www.mathworks.com/help/optim/index.html 

3. B.A. Francis and W.M.Wonham, The internal model principle for linear multivariable regulators, 
Applied Mathematics Optimization,  2 (1975), no. 2, 170 - 194. 

4. Z. O'Neill, S. Narayanan, and R. Brahme. 2010. Model-based thermal load estimation in 
buildings, Proceedings of the Fourth National Congress of the International Building Performance 
Simulation Association, August 2010, 474 – 481. 

 
  



January 2013 

119 
 

3.4.2 Comparative Evaluation of MPC Strategies for Purdue Living Lab Case Study 
Model predictive control (MPC) is increasingly being viewed as a practical solution for building 
heating, ventilation and air-conditioning (HVAC) systems control [1], [2]. The ability to 
incorporate information such as weather forecasts and occupancy profiles in real time decisions 
makes MPC approaches highly attractive in this regard. However, the complexity of building 
models can make such approaches infeasible for all but the smallest buildings. Hence, some 
simplifying assumptions are usually made when formulating the MPC problem for building 
controls. The different assumptions and simplifying techniques lead to different control strategies 
or solvers. If the underlying assumptions are too different, comparison of the performance of the 
solvers is no longer straightforward. Hence there is a need for a common benchmark applicable 
to all solvers that can rank solvers based on their “optimality”. Such a benchmark would ideally 
be a critical part of a tool chain for designing implementable optimal control solutions in 
buildings. Additionally, such a benchmark can also help evaluating the benefits of retrofitting 
buildings. 
 
The current study aims to provide one such benchmark. We use a Purdue Living Lab based 
single zone case study to rank some promising MPC control strategies based on the savings in 
energy costs provided while maintaining occupant thermal comfort. A setback based strategy is 
used to provide the baseline operating costs from which the savings are measured. Additionally, 
computational complexity involved in the solvers is also compared. This is done with the view of 
studying scalability and real time implementation feasibility of the solvers. We begin with 
describing the case study used to compare the solvers. 
 
3.4.2.1 Purdue Living Lab single zone case study. 
For the purpose of this study, a simplified 12-dimensional state-space model of the Purdue 
Living Lab VAV room was used as the common test case. The model was obtained by applying 
energy balances at suitably chosen points inside the room and the walls. The non-linear model 
thus obtained captured all the transients due to heat extraction and solar radiation. Details of the 
modeling procedure are reported in [3]. For application in model predictive approaches, the non-
linear model was simplified. After linearization, discretization and appropriate model order 
reduction techniques [3], the model may be expressed in the form  

 
௧ାଵݔ  ൌ ௧ݔܣ ൅ ௧ݑܤ ൅  ௧ݓܨ

௧ܶ ൌ  ,௧ݔܥ
(3.4.2.1) 

 
where ܣ, ,ܤ  represent the system matrices of reduced dimension obtained via model  ܨ and ܥ
order reduction and ݐ denotes the discrete time instant. The state vector ݔ௧ represents a 
transformed vector containing information about the temperatures of the wall and air nodes. The 
controllable inputs (rate of heat extraction kW) are denoted by the vector ݑ௧. Vector ݓ௧ denotes 
the exogenous (uncontrollable) inputs acting on the envelope (solar radiation, ground radiation). 
The output matrix C provides the linear relation between the states and the outputs. For the 
Living Lab model, the zone air temperature ௭ܶ and the mean radiant temperature ௥ܶ௔ௗ were 
assumed to be available as the output i.e. ௧ܶ ൌ ሾ ௭ܶ, ௥ܶ௔ௗሿ௧்.  
 
The exogenous input ݓ௧  captures 16 uncontrollable variables whose complete data was assumed 
to be known. For simulations, this data was extracted from Indiana TMY2 weather data 
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(available for every 10 min intervals) corresponding to July 2010 (summer). The state space 
model was discretized with a time step of 10 minutes assuming zero order hold. The choice of 
the time step was motivated by the resolution of the weather data available. Additionally, the 
internal gains due to occupants and equipment were modeled proportional to the occupancy 
profile depicted in Fig. 3.4.2.1. Peak occupancy (24 occupants) corresponded to an internal gain 
of 6 kW. Utility rates were assumed to follow a time-of-day pricing with peak price being 
0.15$/kWh from 10 am to 3 pm and 0.5 $/kWh during off peak times. 

 
Figure 3.4.2.1 Schedule of occupancy and utility pricing. 

 
A quasi-static approach was used in modeling the Air Handling Unit (AHU) and cooling plant 
supplying cool air to the room. This was motivated by the need to reduce the large number of 
controllable variables available on the plant side. Under certain simplifying assumptions such as 
constant efficiency and pressure ratios, the power consumption of the different components 
(namely coils, fans and pumps) were modeled using empirical models. The total power 
consumption of the plant was generated by summing up the individual consumptions and had the 
following form 
 
 ܲ ൌ ݂ሺ ሶ݉ ௩௘௡௧, ௩ܶ௘௡௧, ௭ܶ, ைܶ஺,   .ሻܪܴ
 
Here ሶ݉ ௩௘௡௧ and ௩ܶ௘௡௧ represent the flow rate and the temperature of the air supplied by the AHU, 
while ௭ܶ and ைܶ஺denote the room air temperature and the ambient temperature respectively. ܴܪ 
stands for the relative humidity of the ambient air. Noting that the controllable variables ሶ݉ ௩௘௡௧ 
and ௩ܶ௘௡௧ together affect the room dynamics in (3.4.2.1) via the rate of heat extraction ݑ, we can 
relate the AHU operating power to the heat extraction rate using a lookup table of the form 
 
 ܲ∗ሺݑ, ௭ܶ, ைܶ஺, ሻܪܴ ൌ min

௨ୀ௚ሺ௠ሶ ೡ೐೙೟ , ೡ்೐೙೟ሻ
݂ሺ ሶ݉ ௩௘௡௧, ௩ܶ௘௡௧, ௭ܶ, ைܶ஺,   .	ሻܪܴ

 
The lookup table ܲ∗ሺݑ, ,ݖܶ ,ܣܱܶ  ሻ gives the minimum power consumption of the AHU whenܪܴ
supplying a heat extraction rate of ݑ at zone temperature ௭ܶ, ambient temperature ைܶ஺and ܴܪ 
humidity level. Using this optimal map reduces the degrees of freedom ( ሶ݉ ௩௘௡௧	, ௩ܶ௘௡௧ to ݑ) 
available in controlling the room dynamics. This leads to a reduction in the search space when 
searching for optimal plant operation. Also, the lookup table in effect decouples the optimal 
control of the room dynamics and the problem of choosing the plant set points. It should be noted 
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that there is an implicit assumption of the plant components having much smaller time constants 
compared to the zone dynamics to justify the usage of a quasi-static model. Further details on the 
plant modeling are given in [4].  
 
Computing the energy costs incurred due to an optimal trajectory is relatively straight forward. 
From the lookup table ܲ∗described above, it is possible to compute the dollar costs of energy 
corresponding to a control trajectory ݑ as follows 
 
ܬ  ൌ ;ݑ௧ܲ∗ሺݎ∑ ௭ܶ, ைܶ஺,   . ሻ௧ܪܴ

 
 

Here ݎ௧ denotes the time-of-day price in dollars per unit power per time step and ܲ∗ሺ൉ሻ௧ refers to 
the computed power consumption at time ݐ. We assume that the complete information of the 
ambient conditions is known and the zone temperature ௭ܶ is available from the room dynamics as 
component of the output	 ௧ܶ ൌ  ௧. Using the above relation it is possible to compute the actualݔܥ
energy costs incurred by the trajectory generated by any particular solver. We ignore the peak 
demand costs in this study, to simplify computation. 
 
3.4.2.2 MPC optimization strategies 
Model predictive control involves forecasting the system trajectories, over a prediction 
horizon	ܮ, and making an optimal decision based on the prediction [5]. The first step of the 
optimal decision is applied to the system and the process repeated with an updated forecast. 
Assuming complete information of exogenous inputs ݓ௧ in (1), the predicted trajectories at time t 
under a control input trajectory ݑ௧|௧	, ,௧ାଵ|௧ݑ . . . ,  ௧ା௅ିଵ|௧ are described byݑ
 
௧ା௞ାଵ|௧ݔ  ൌ ௧ା௞|௧ݔܣ ൅ ௧ା௞|௧ݑܤ ൅  ௧ା௞|௧ݓܨ

௧ܶା௞|௧ ൌ ,௧ା௞|௧ݔܥ ௧|௧ݔ ൌ ,௧ݔ ݇ ൌ 0,1, … , ܮ െ 1,  
(3.4.2.2) 

 
where the subscript ݇	 ൅ ݇ is used to denote the predicted value at time ݐ|ݐ	 ൅  formed by ݐ
propagating the initial value at time	ݐ. The model predictive control problem can be formulated 
using the predicted trajectories to define an optimization problem over the look ahead horizon ܮ 
as follows. 
 

∗ݑ ൌ argmin෍ ,௧ା௞|௧ݔ௞ሺܬ

௅ିଵ

௞ୀ଴

 ௧ା௞|௧ሻ (3.4.2.3)ݑ

 ௞ represents the cost incurred at ݇ steps into the future. The optimization problem is constrainedܬ
by the dynamics in (3.4.2.2). Out of the resulting optimal input sequence ݑ௧|௧

∗ , ௧ାଵ|௧ݑ
∗ , … , ௧ା௅ିଵ|௧ݑ

∗  
, only the first input ݑ௧|௧

∗ ൌ  ௧∗ is applied to the system in (3.4.2.1) and the trajectories areݑ
predicted with ݔ௧ାଵ as the initial condition. A major challenge in applying model predictive 
approaches to buildings is the computational complexity presented by optimization at every time 
step. As the cost functions ܬ௞ need not be convex, one needs to resort to numerical optimization. 
Additionally, the dimension of the search space grows linearly with the prediction horizon ܮ as 
the length of the trajectory to be optimized grows. 
 
Hence, some approximations are usually made to facilitate real-time computation. We describe 
three different MPC strategies (solvers) based on the approximations made and compare the 
performance in terms of the benchmark cost function when applied to the Living Lab case study. 
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We begin by describing a non MPC night time setback based strategy which is used to obtain the 
baseline costs of operating the AHU in a conventional way. 
 
Conventional Control 
For the Living Lab model described, a nighttime setback strategy was simulated as a 
conventional baseline strategy. The control law was determined in order to maintain the zone air 
temperature at a set-point of 26°C during working hours (6am -6pm). During the night, the zone 
air temperature is allowed to float to a maximum of 30°C. Time-of-day pricing was hence 
ignored during the control generation. The results of a 3 day simulation are depicted in Fig. 
3.4.2.2. 
 

 
Figure 3.4.2.2 Trajectories under conventional control. 

 
Evaluating the power costs for the obtained control trajectory yields a mean of 1.409$ operating 
costs per day for this three-day period. This result quantifies the baseline metric which can be 
improved by using MPC based approaches. The conventional control strategy has negligible 
computational complexity as there is no optimization involved at any time. 
 
Quadratic Programming (QP) based MPC  
In general, solving the optimization problem in (3.4.2.3) can be intractable in real time due to the 
non-convex nature of the cost functions Jk. However by approximating the cost function using 
quadratics enables us to use highly efficient quadratic programming based numerical 
optimization routines. In particular, the linear nature of the constraints involved in the problem 
such as constraints due to dynamics (3.4.2.2) and constraints on the output (temperature 
thresholds) makes quadratic programming (QP) [6] an attractive choice for optimization. In order 
to apply quadratic programming based MPC to the case study, we obtain local quadratic 
approximations of the lookup table P* (u, Tz, TOA, RH) in terms of the control input , 
parameterized for various values of Tz, TOA, RH. The fits generated for the case study were 
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sufficiently close to the actual value. Fig. 3.4.2.3 depicts the closeness of a typical quadratic fit. 
 

 
Figure 3.4.2.3 Quadratic Fits vs. Actual Power consumption  

Using the quadratic fits, we can express the total power costs over the look ahead horizon as the 
quadratic 
 
,௧ା௞|௧ݔ௞൫ܬ∑  ௧ା௞|௧൯ݑ ൌ ௧ା௞|௧ݑ௧ݎ∑

் ܳ௞൫ݔ௧ା௞|௧ , ைܶ஺,    .௧ା௞|௧ݑ൯ܪܴ
 
Here ܳ௞ are in general positive definite matrices of appropriate dimension obtained from the 
quadratic fitting of the lookup table. The dependence of the fit on ௭ܶ is modeled via the state 
variable ݔ௧. Observing that the power consumption is only weakly dependent upon the zone 
temperature due to its low variance over the look ahead horizon, we can further choose ܳ௞ 
independent of ݔ௧ା௞|௧ without affecting the cost function appreciably. Using this approximation 
allows us to obtain a closed form Hessian of the cost function independent of the control law and 
facilitates using quadratic programming based solvers.   
 
QP based solvers can handle only linear and interval constraints. Hence we express the occupant 
comfort in terms of a temperature interval. During the occupied hours (6am – 6pm) we constrain 
the zone temperature to lie within a band of	25଴ܥ െ 27௢ܥ. This is almost comparable with the 
setback strategy used for the conventional controller. To express this constraint as a linear 
function of the control inputs, we use (3.4.2.2) to obtain 
 

൥
ሺ௧ାଵ|௧ሻݔ

⋮
ሺ௧ା௅|௧ሻݔ

൩ ൌ ൦
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(3.4.2.4)
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Since wt+k/t is assumed to be completely known over the lookahead interval we can express 
interval constraints on Tt+k/t as linear constraints on ut+k/t. Constraints on the heat extraction rate 
imposed by the AHU capacity are also assumed to be interval constraints (ut+k/t [umin, umax]). 
Using the closed form Hessian and the constraint formulation, we simulate the model predictive 
control strategy using a lookahead horizon of 24 hours. The results of the simulation are shown 
in Fig. (3.4.2.4). 

Figure 3.4.2.4 Trajectories under QP based MPC 
 
The results indicate that the QP based solver utilizes a precooling based strategy in response to 
the variation in utility rates. Precooling can be observed during the interval from 6am to 10am 
when the utility rates are at their off peak prices (0.05$/kWh). During the peak period, the 
controller drives the temperature to the maximum comfortable value (27°C) while using the 
energy storage from the precooling period initially. This explains the drop in cooling rate 
occurring around 10am. The mean operating costs over 3 days were evaluated to be 1.278 $/day 
or a savings of 9.3% over the conventional setback strategy. On an Intel Core2Duo 2.1Ghz 
computer, the average time taken to calculate the optimal control law for one look-ahead horizon 
is 4.65 seconds. Note that this time is much smaller than the discretization interval of 10 mins 
indicating the feasibility of real time computations for this case. 
 
Move Blocking based MPC solver 
MPC strategies face growing computational costs with increasing dimension of the state space 
and the look-ahead horizons. Hence most MPC strategies do not scale well to multi-zone 
buildings. To further reduce the computational complexity involved in the QP solver, we 
introduce the concept of move blocking. Move blocking [7] refers to the reduction in the degrees 
of freedom (number of control inputs to be optimized) by restricting a fixed number of changes 
in the control inputs. For instance, the QP solver described above had 144 degrees of freedom (1 
control input per 10 min for 24 hours look ahead) to be optimized over every look ahead. Using a 
move blocking approach one can decrease the computational load by constraining the control 
input to remain fixed for certain time steps. Fixing the control input changes to occur every 2 hrs 
instead of 10 mins yields a 12 degree of freedom solver which can be solved in much less time 


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than the original problem at the cost of optimality. The results of such a solver (12 degree of 
freedom) are presented in Fig. 3.4.2.5. The mean energy costs over 3 days are computed to be 
1.306$/day. It is observed that the controller is suboptimal to the QP solver presented previously. 
However, the average time per decision is reduced to 0.65 seconds. 
 
  
 
3.4.5 Comparative analysis 
 
3.4.6 Concluding Remarks 
 
 
 
  3.5 Scalable and Cost Effective Implementation of Optimal Building Control (UTRC) 
 
4. Summary and Future Work 

 
Fig: 3.4.2.5: Trajectories under the move blocking based solver 

Sequential Quadratic Programming (SQP) based MPC solver 
Figure 3.4.2.5 Trajectories under move blocking based MPC  

 
The QP solver described previously approximates the nonlinear energy cost function with a 
quadratic in order to make the computation of the optimal control tractable. Sequential quadratic 
programming (SQP) extends that idea by iteratively approximating the cost function as a 
quadratic and the search direction is chosen to be the corresponding minimizer. SQP involves 
multiple numerical computations of the cost function Hessian. This can be prohibitively 
expensive when the cost function evaluation is time-consuming. SQP can also handle nonlinear 
constraints via linearization thus allowing for better comfort metrics such as PPD or PMV.  
Following the development in Section 3.3.2, we incorporate a PPD based constraint in the 
problem formulation. The MPC problem at time ݐ was formulated with the cost function as  
 
 

min෍ ௞ܬ

௅ିଵ

௞ୀ଴

ݐ݆ܾܿ݁ݑݏ  ݋ݐ

௧ା௞|௧ܦܲܲ ൑ ቄ10 % ݉݋ݎ݂ 6ܽ݉ ݋ݐ ݉݌6
30 % ݁ݏ݅ݓݎ݄݁ݐ݋

 

 

 
where, the constraint on PPD prioritizes comfort during occupied periods while allowing for less 
conservative cooling requirements during other times. Additional factors for computing PPD 
such as occupant clothing and activity levels are chosen so that the 10% PPD corresponds 
closely to the 25௢ܥ െ 27௢ܥ comfort interval. Computing the PPD involves solving a nonlinear 
algebraic equation and hence is computationally demanding. To facilitate computing, a cubic 
regression model was developed for expressing the PPD in terms of the zone air temperature and 
the mean radiant temperature. Similarly, the lookup table ܲ∗ was also represented using a global 
quadratic 

ܲ∗ሺݑ; ௭ܶ, ைܶ஺, ሻܪܴ 	ൌ 	 ሾݑ, ௭ܶ, ைܶ஺, ,ݑሿ்ܲሾܪܴ ௭ܶ, ைܶ஺, ሿܪܴ ൅ ଴ܲ.	
 

occupancy utility pricing

Heat addition rate (kW)
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The MPC problem is numerically solved using the SQP solver with the cost ܬ௞ being 
approximated using the global quadratic fit. Further details of the SQP solver are presented in 
[4]. Results of the simulation of the SQP solver for the case study are presented in Fig. 3.4.2.6. 
For the case study it is observed that the solver has issues with widely fluctuating control law. 
This phenomenon is due to the convergence of the solutions to local minima and will be 
investigated in the future. The mean operating costs are 1.300$/kWh with a mean decision time 
of 4.55 seconds. 
 

 
Figure 3.4.2.6 Trajectories under SQP based control- Convergence to local minima 

 
Table 3.4.2.1: Comparison of MPC solvers 

Solver Mean AHU Energy Costs 
(per day) 

Computational 
Costs(sec/decision) 

Intel Core2Duo  2.1Ghz 

Conventional(Setback  based) 1.409 $ 
 (baseline) 

 

Realtime 
(no optimization involved) 

Quadratic Programming (QP) 1.278 $  
(9.3 % saving) 

 

4.5 sec 
(24 hour lookahead) 

Move blocking (12 degrees of 
freedom) 

1.306 $ 
 (7.3 % saving)  

0.65 sec 
(24 hour lookahead) 

 
Sequential Quadratic 

programming based solver 
1.300 $ 

(7.7 % saving) 
4.55 sec 

(24 hour lookahead) 
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3.4.2.3 Summary 
Table 3.4.2.1 summarizes the performance of the solvers studied. We observe greater than 9% 
savings compared to conventional setback control when using MPC based algorithms. The 
higher running cost of the conventional controller is expected as no provision is made for time of 
day pricing. The feasibility of operating the MPC in real time is also established from the 
computation runtimes. It must be noted that the scaling to a multi-zone building will result in an 
exponential increase in the computation burden due to the increase in the degrees of freedom. 
This can be alleviated to some extent using move blocking based approaches as suggested from 
the decrease in computational time at the cost of suboptimal savings.  
 
3.4.2.4 Comments 
 We have formulated a preliminary tool chain to compare the efficacy of any MPC based control 
strategy in terms of the energy and implementation costs. Another dimension for comparison of 
the MPC strategies is occupant thermal comfort. Comparing MPC solvers consistently over their 
performance in occupant comfort would require a quantification of occupant discomfort. Though 
metrics such as PMV and PPD as used in the SQP solver are available, integrating them into the 
cost function poses some problems. First, there is no uniform way to scale the relative 
importance of energy costs and discomfort penalty. This can lead to different tradeoffs and 
control trajectories. Some empiricism is required in this regard. One interesting method is to 
study the change in occupant productivity with thermal discomfort. One study in this area is [8] 
where the variation of the productivity in office environments with PMV is formulated. Second, 
integrating discomfort metrics in the cost function invariably leads to more nonlinearity thus 
affecting the convergence of the solvers themselves. Further work is required in this area to 
avoid such issues. 
 
3.4.2.5 Conclusions 
Based on the results, we conclude that there is a scope for savings using model predictive control 
in buildings. We have a preliminary toolkit to compare the efficacy of other algorithms. 
Additional criteria that can be incorporated for comparing solvers include their performance in 
terms of occupant comfort and their sensitivity to inaccurate forecasts and models. Future 
directions include comparing other strategies in multiple and more varied scenarios. 
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3.5 Scalable and Cost Effective Implementation of Optimal Building Control 
 
3.5.1 Introduction and Motivation 
During the BP2, while developing and evaluating the technical approach we noted the following 
challenges associated with the potential implementation of a control retrofit using the MPC 
algorithmic approach 

- High commissioning cost – due to time required for model selection and calibration 
- Maintenance of the control solution – due to the fact that the model parameters can 

exhibit high variability for different operating points 
- Computational scalability – large computation power and time required 

To alleviate the above mentioned difficulties, UTRC proposes an approach that can be 
implemented and tested as part of the efforts planned for BP3. The proposed approach has been 
developed based on the divide and conquer idea, and makes use of optimization tools to achieve 
optimal coordination between the HVAC equipment. Specifically, the proposed approach may 
use the following sequence of decisions at different levels in the hierarchy:  

- For each zone using available measured data one computes current expected demand (to 
compensate for the effects of the thermal load disturbances) based on a  

o Simplified nominal model of thermal zone dynamics and  
o Online uncertainty/load estimation  

- Propagate the expected optimal air conditioning demand (heating or cooling) as a request 
to the AHU level where decision will be made on using optimization on the AHU (air 
flow and discharge air temperature), 

- Given the received discharge air temperature received from AHU, at the VAV level an 
optimization problem can be again solved to provide optimal zone inputs supply air flow 
and supply air temperature.  

- Demand for energy can be further propagated to cooling/heating plant level where a new 
optimization based control problem can be formulated and solved. 

Preliminary results and insights are outlined in subsection 3.5.2.  
 
The features that will characterize the hierarchical control approach are summarized as the 
following 

- Hierarchical architecture: amenable for parallel and distributed implementation, 
- Minimal modeling efforts of building envelope, 
- Adaptive to model parameters/load variations. 

 
The implementation of the hierarchical control architecture will result in an overall increased 
scalability of the control development and deployment, and increased robustness to unmeasured 
and uncertain disturbances. This will ultimately translate into reduced control commissioning 
time and will allow for continuous adaptation of a control strategy to respond to continuously 
variable loads associated with changing weather conditions, occupant behavior, etc. 
Additionally, enabled by the hierarchical approach to building control, the control retrofit 
strategy will become highly scalable to implementation on a heterogeneous set of buildings. 
 
The hierarchical architecture offers high flexibility to integration with model based predictive 
control approach that has been developed in BP1 and BP2 to exploit the advantages offered by 
prediction coupled with the storage capability offered by the building envelope.   
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3.5.2 Preliminary Study on the Hierarchical Control Architecture  
 
3.5.2.1 Zone Level Models and Online Uncertainty Estimation  
We propose the following model for zone temperature dynamics 

.  (3.5.1) 
This simplified first order dynamical model for the individual zone temperature dynamics 
includes a nominal part, which can be accurately determined, and an uncertain part comprising 
the model uncertainties and disturbances, including the internal load. The effect of un-modeled 
dynamics and that of the un-measured input loads is captured by the uncertainty term, denoted by 
w. This term aggregates all unknown heat gains/losses in the zone as well as model uncertainty. 
The uncertainty term can be estimated online using receding horizon maximum likelihood 
estimation formulation. 
 
Two uncertainty estimation algorithms have been considered.  

- The first algorithm is an uncertainty observer that requires continuous-time 
implementation, i.e. ODE numerical integration methods, and provides strong guarantees 
on bounded estimation error.  

- The second algorithm is an optimization-based moving horizon estimator which solves a 
least-square problem over the data history in order to estimate uncertainty in dynamics. 
The least-square algorithm operates in discrete-time and is more suitable for 
implementation in commercial digital HVAC control hardware. However, the least-
square algorithm does not provide theoretical guarantees on estimation error bounds. 

Future study will be conducted in BP3 to refine the approach to uncertainty estimation and 
propagation for the internal heat gains and their impact to the zone temperature predictions with 
real-building operational data. 
 
3.5.2.2 Optimal Control for Zone Temperature 
Given the model for zone temperature described by Eq. 3.5.1 coupled with the online uncertainty 
estimation procedure, for every zone one needs to design control policies to select  and 

 such that the constraint on zone temperature is satisfied .  Equation 
3.5.2 describes the optimization problem that can be solved to provide optimal control solution 
for the two decision variables  and . 
 

 (3.5.2) 
 

One notes that the system dynamics are included in the constraint specification, and that the cost 
function to be optimized penalizes the mass air flow to the zone and the reheat energy. This 
formulation offers the user selection capability for the two weights that define the balance 
between electrical energy spent at the fan level to generate the required air flow and the energy 
spent for reheat. A next step to evaluate the performance of this decision is to incorporate 
performance curves associated with the fan and reheat coil. 
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Figure 3.5.1 presents the obtained optimal decision maps for supply air temperature setpoint and 
supply mass air flow setpoint for a zone, calculated at the VAV level, given a fixed discharge air 
temperature provided at the level of the AHU. The figures show the values of the optimal control 
inputs setpoints with respect to the value of the estimated uncertainty and the value of the 
measured zone temperature. 

       
            Figure 3.5.1 Optimal decision maps for supply air temperature setpoint and supply mass 

air flow setpoint at the VAV level  
 
The preliminary results indicate that the on a local level one can optimally calculate the 
supervisory control setpoints that will result in zone temperature control with minimal energy 
consumption. We note that these preliminary results, calculated using optimization, present a 
similar switching pattern with the VAV control inputs often observed in common practical 
implementations. In fact one notes that the calculated optimal control inputs present a on/off 
behavior and the switching boundary, correlated with the zone thermal comfort setpoint band of 
[21.1, 23.89] deg C, can be optimally selected based on the value of the estimated uncertainty 
and the present zone temperature measurement. 
 
3.5.2.3 Software Architecture Design to Enable Scalable Implementation and Deployment, 
and Fast Commissioning Of Optimal HVAC Control Algorithms 
In order to have a scalable deployment of the control algorithms an important future task has to 
consider development of software architecture that will support integration between different 
control and estimation modules making use of the services offered by the software platform that 
provides middleware between selected control algorithms and the BMS. This control architecture 
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must also allow seamless integration between control algorithms and building and equipment 
models.  
 
Following a natural hierarchical architecture of a building, an object-oriented control framework 
was defined. The software framework provides class definition for common HVAC components 
like zones, VAVs and AHUs and defines communication interface between them and data-
acquisition and actuation middleware. This development framework will be further refined, by 
defining standardized interfaces between software objects representing models and algorithms, to 
support seamless integration of building envelope, equipment and load prediction models (from a 
building models library) with the developed optimization based control algorithms. This effort 
will enable fast commissioning of the building control for different building types and allow 
performance evaluation and comparison of different control approaches in the real-building 
systems. 
 
3.5.3 Automatic Differentiation 
The combination of nonlinear model predictive control (NMPC) algorithms, described above, 
with automatic differentiation (AD) algorithms to accurately compute the required derivative 
information provides a robust computational platform for control design4. While a few 
commercially available AD implementations are available in MATLAB. However these do not 
provide differentiation of many basic functions, including most matrix functions, which are 
important in engineering and control applications. This includes solutions to ordinary differential 
(algebraic) equations, eigenvalue problems, Lyapunov or Riccati equation solvers, matrix 
factorizations, among scores of important functions.  In many cases, the underlying algorithms 
are not available to implement third party differentiation algorithms, or the algorithms 
themselves are not differentiable due to algorithmic choices such as conditional statements 
(max/min, abs, etc.) or adaptivity (quadrature and ODE solvers). Thus, to build an AD tool that 
works for the largest number of (control) engineers, we have implemented new algorithms that 
provide the best possible estimate of the derivative when it is defined, and provide consistent 
one-sided derivatives when the derivative itself is not defined.  
 
For example, many algorithms have a non-differentiable implementation even when the 
underlying mathematical problem is differentiable.   Our strategy is to implement numerically 
consistent derivatives when feasible, but to develop new algorithms to compute derivatives when 
the underlying algorithms are not available.  To this point, most relevant MATLAB functions 
have been implemented for differentiation with respect to a single parameter (efficiently 
handling multiple parameters through forward and reverse modes of AD are planned for BP3.  
We note that our new algorithms take the approach of avoiding numerically generated non-
differentiability by approximating the derivative of the mathematical problem instead of the 
derivative of the approximation to the mathematical problem.  For example, for the ODE 
functions, the output is not differentiable when parametric changes affect the time step selection 
algorithm (which is nearly every case since the interesting problems occur when the parameter 
affects the solution output). We provide examples of a few of the new algorithms we have 
developed in the Appendix 3.5.  
 

                                                 
4 Cao	 and	 Al‐Seyab,	 Nonlinear	model	 predictive	 control	 using	 automatic	 differentiation,	 European	 Control	
Conference,	2003. 
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3.5.4 State Estimation from Sensed Data (Optimal Sensor Placement) 
Our objective is to develop and demonstrate a process, tool, and algorithms that will significantly 
reduce the development and commissioning time/cost to implement advanced building control 
algorithms for retrofits by automating model and control law generation.  The BP2 deliverable is 
the Demonstration of prototype building control algorithms that provide guaranteed performance 
with robustness margins for whole building solutions.  In order to accomplish this, one must deal 
with the fact that not all states are available for measurement (partial state output) and hence 
some form of state estimation must be used.  Thus, a state estimator must be considered if there 
is any hope of quantifying the robustness of realistic model predictive controllers.  Sensor types 
and locations greatly impact the quality of these estimators. 
 
It is well known that the performance of MPC deteriorates because of the estimation error.  In 
order to study and quantify the robustness an output feedback MPC, it is necessary to choose a 
suitable strategy for the state estimation.  We focus on the Kalman Filter (KF) since it is the most 
popular tool used in modern control and there is a rigorous proof of the stability with error 
bounds.  Recently, new (local) error estimates have been obtained for the Extended Kalman 
Filter (EKF) which will be essential for Nonlinear MPC (NMPC) that is the basis for the Task 
4.2 work.  To illustrate the potential practical benefits of the sensor location tool, consider the 
results obtained on the test room below. 
 
The test case is a suite with one zone devoted to a bed area and the remaining zones are bath and 
dressing areas as depicted in Figure 3.5.2 below.  There are two inlet diffusers and one outflow 
return vent, which is the only outflow when the door is closed. 
 

               
 

Figure 3.5.2 A three zone suite problem with airflow 
 
It is important to note that the air flow through the room can have a tremendous impact on 
sensing and control. In particular, if one were to assume a “well mixed flow” and formulate the 
sensor location problem, then the “optimal location” would in general not be valid for more 
realistic room operation.  Figure 3.5.3 shows the advection velocity field ( )v x

 for the cases with 
the door open and closed.  In the test problem here, clearly the flow is not well mixed in either 
case. However, the flow in the room to the right has similar a structure and one might guess that 
if one limits the sensor location to the bed area, then the optimal location will not change 
dramatically. This indeed is true as demonstrated in the numerical example below. 
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The estimation error is based on employing a Kalman Filter for state estimation and given by 

   
2

0

( ) ( , ) ( ) ( ( )),ez s z s ds Tr 
 
   
 
 
q q q

  J     (3.5.3) 

where q
 is the sensor location, ( )  denotes the expected value of the random variable   and 

( ( ))Tr  q
 denotes the trace of the state estimation covariance operator ( )  q

 .  Consequently, the 

optimal sensor location problem is to find an optimal location optq


 such that ( ) ( ( ))Tr q q
 J  is 

minimized. 
 
To illustrate the range of values for the cost function ( ) ( ( ))Tr q q

 
J , we assume that there is only 

one sensor and that the sensor can only be placed on a wall in the bedroom area on the right side 
of the suite. The spatial variation starts with the sensor located on the intersection of the upper 
wall in the bed area with the room divider on the left of the bed area.  As q

  moves along the 
upper wall to the right, down the right wall and back to the left of the lower wall, the cost 

( ) ( ( ))Tr q q
 

J  is computed and plotted.  It is important to note that one does not have to make 
assumptions about where the disturbance is located.  In particular, by setting the suite 
disturbance to be 

  (3.5.4) 

where ( ) x
  is an approximation of the Dirac delta function, the disturbance operator is 

approximately the identity.  This particular choice of disturbance means that we are assuming the 
minimal information about the spatial location and intensity of the random field. 
 

 
 

Figure 3.5.3 Flow through the suite problem: door open and closed 
 
In Figures 3.5.4 and 3.5.5 we plot the values of ( ) ( ( ))Tr q q

 
J  as the sensor location q

  moves 
around the wall in the right room.  Here, “upper” refers to the upper wall, “right” refers to the 
right wall, “lower” is the bottom wall, and “left” is the left wall of the bed area.  Note that we 
also computed the cost ( ) ( ( ))Tr q q

 
J  for the case where the sensor is placed in the opening 

between the bed area and the left zone of the suite even though there is no wall there. 
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Figure 3.5.4 Plot of the cost ( ) ( ( ))Tr q q
 

J  and a sensor location on lower left wall 

 
Observe that the optimal location is in the middle of the right wall and the absolute estimation 
error is approximately 4( ) 2.68 10opt  q


J  which should be expected since the error is computed 

over all time and nothing is assumed about the location and intensity of the disturbances. The 
important point is that by placing a sensor in the optimal position, the total estimation error can 
be reduced by nearly 30%  compared to the worst placement near the inlet vents.  Also observe 
that as the sensor location moves across the inlet vents, there is sharp jump in the cost 

( ) ( ( ))Tr q q
 

J . Elsewhere, the cost is relative smooth which implies a gradient based 
optimization scheme should work well if one avoids placing a sensor on inlet vents.  In fact, the 
Matlab optimization toolbox easily found the global minimum for this test problem. 
 

          
 

Figure 3.5.5 The optimal location on right wall and the plot of the Cost ( ) ( ( ))Tr q q
 

J  

 
As noted above, the case where the door is open is similar to the closed door case and the 
optimal location is essentially the same.  However, as shown in Figure 3.5.6 below the absolute 
estimation error is approximately 4( ) 3.54 10qopt  


J  which implies the state estimator is less 

accurate when the door is open.   
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Figure 3.5.6 Plot of the cost ( ) ( ( ))Tr q q
 

J  for the open door case 

 
We have developed an approach and initial computational tool to address the problem of 
optimally locating sensors to minimize the mean square error between a temperature field and an 
estimated temperature field based on localized sensed output alone. This is important since 
measurements in typical building systems often come from sensors that are spatially distributed 
and provide accurate measurements only in (small) local regions. We focused on the Kalman 
filter since it is optimal for a fixed sensor type and location. The Kalman filter is a powerful tool 
for state estimation needed in the development of practical feedback and MPC controllers when 
only partial sensed information is available. In addition, the basic method can be applied to 
problems where robustness of the controller is essential.  Since buildings are highly uncertain 
dynamical systems, placing sensors for robust control and optimality of performance is a key to 
the operation of future high performance buildings.  Early testing indicates that multi-grid like 
algorithms can be employed to reduce design cycle times by 10X.  Expanding this tool to address 
multi-sensor types and locations will make it useful for practical implementation by several user 
groups. 
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4. Summary and Future Work 
Significant progress was made in developing and demonstrating tools that could be used to 
provide a scalable and cost effective platform for generation of site-specific optimized controls 
for buildings. Accomplishments in the BP2 have included 1) development of control-oriented 
models along with case study demonstration results, which covers reduced-order and inverse 
(data-driven) models for building envelope, indoor air, and HVAC equipment; 2) development, 
comparisons and implementation of MPC approaches and algorithms along with case study 
results, which covers simulation-based studies for both Building 101 and the Purdue Living lab; 
and 3) scalable and cost effective implementation of optimal building control, which covers 
preliminary study on the hierarchical control architecture, state estimation from sensed data and 
efficient algorithms for optimal control with meaningful cost models. In the following sections, 
an executive summary is provided for these accomplishments. 
 
The collaborative effort in the BP2 will continue in the BP3 and will involve further 
development and application of the tools.  There are three collaborative activities in this subtask.  
UTRC is focusing on implementation and demonstration for a centralized solution in Building 
101 and West Chester University. Purdue is addressing automatic model generation and 
evaluating the benefits of distributed versus centralized solutions. VT is tackling some of the 
numerical approaches for obtaining models and solving the optimization problems.  This subtask 
will start to categorize optimal control strategies for different building and systems types with 
potential energy savings range.  This will facilitate building owners, operators and energy 
managers to screen, identify and select the appropriate strategies for their buildings     
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Appendix 
 
Appendix 2.2 
 
Fitting the Data: the Iterative Rational Krylov Algorithm  
We have developed a novel two-stage method for designing reduced-order models for indoor air 
environments. Our method does not require access to internal dynamics and produces a reduced-
model directly from input/output measurements. In the first step of method, input-output data is 
obtained by subjecting each input of interest to a step-like change and the outputs are sampled. 
This simulation is achieved using FLUENT. By differentiating the output samples using finite 
differences, impulse response data (Markov parameters) are obtained. We then form a large-scale 
block-Hankel matrix whose entries are the Markov parameters obtained by numerical simulation. 
The common data-driven model reduction methods would simply apply Partial RealizationA1or 
the Eigenvalue Realization Algorithm (ERA)A2 to this Hankel matrix to extract the reduced-
model directly. However, these approaches would suffer from the fact that they would not make 
use of the data to its fullest extent. Instead, we apply partial realization and/or ERA to obtain an 
intermediate-order model which makes use of the available data as much as possible.  
 
This intermediate model is not our final model since its order is usually quite large, around 3000. 
However, what this intermediate model now presents is a state-space realization, allowing us to 
further reduce it optimally using optimal projection-based model reduction techniques. This is in 
contrast to reducing the data directly without an optimal reduction search. In this second-stage of 
our approach, we employ interpolatory optimal H 2  model reduction method, known as Iterative 
Rational Krylov Algorithm (IRKA)A3. IRKA is numerically effective requiring only linear 
solves; thus can be easily applied to intermediate model to reduce it optimally. The (optimal) 
reduced-model of this second stage is our final data-driven model for the underlying input/output 
dynamics. We have applied this two-stage reduction method to Purdue Radiant Room and 
obtained a very accurate match of the full-order input/output data.  
 
Stage-1 
Let  GFOM(z) = ∑ k=1

∞g kz
-k be the expansion around s = ∞. Construct  
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



















,    M 

g2 g3  gN1

g3 g4  gN2

   
gN1 gN3  g2 N





















 


Z  g1

T g2
T  gN

T





T

,   and   T  g1 g2  gN




. 

Let L = YΘXT , be the SVD of L with rank(L) = k. Then,  

                                                 
A1 A.J.Mayo and A.C.Antoulas. A framework for the solution of the generalized realization  problem.  Linear 
Algebra and Its Applications, 2007. 
A2 S.Y. Kung. A new identification and model reduction algorithm via singular value 
  decomposition. Proc. 12th Asilomar Conf. Circuits, Syst. Comput., 1978. 
A3 S. Gugercin, A.C. Antoulas, and C.A. Beattie. ${\mathcal{H}}_2$ model reduction for large-scale linear 
dynamical systems". SIAM Journal on Matrix Analysis and Applications,  2008. 
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G(z)  C(zEA)1B, 
where  

E  Yk
T LXk , A  Yk

T MXk , B  Yk
T Z,  C  TXk . 

is our intermediate reduced-model.  
 
Stage-2 
In the second-stage of the methods, we apply projection-based optimal model reduction method 
IRKAA3 to further reduce the intermediate model G(z) = C(zE - A)-1B and obtain our final 
reduced model. A sketch of IRKA is given below:  

Algorithm: Iterative Rational Krylov Algorithm ( IRKA) 
1. G(z) = C(zE - A)-1B. 
2. Choose initial interpolation points {s1,…,sr}; and tangential directions {b1,…,br} and 

{c1,…,cr}; all three sets chosen are closed under conjugation. 
3. Construct  

Vr = [(s1E - A)-1Bb 1,…, (srE - A)-1Bb r].  
Wr = [(s1E - A)-T CT c 1,…, (srE - A)-T CT c r]. 

4. until convergence 
a. Ar = Wr

T AV r, Er = Wr
T EV r, Br = Wr

T B, and C r = CVr. 

b. Compute Arxi  ̂iErxi and yi
*Ar  ̂iyi

*Er  with yi
*E rxj = δij where yi

* and x i are 

left and right eigenvectors associated with 
i  

c. si 
1

̂i

, bi
T  yi

*Br and ci ← Crxi, for i = 1,…,r. 

d. Construct  
Vr = [(s1E - A)-1Bb 1,…, (srE - A)-1Bb r].  
Wr = [(s1E - A)-T CT c 1,…, (srE - A)-T CT c r]. 

5. Ar = Wr
T AV r, Er = Wr

T EV r, Br = Wr
T B, C r = CVr. 

6. Gr(z) = Cr(zEr - Ar)-1B r. 
The reduced model in Step 6, i.e. Gr(z) = Cr(zEr - Ar)

-1B r, is the final reduced-model of our two-
stage reduction methodology. 
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Appendix 2.5 
 
Data-Driven Model 
 

Table A.2.5.1 Coefficients for supply fan power in Eq. 2.5.1 
 

 

 

Table A.2.5.2 Parameters for air temperature across supply fan in Eq. 2.5.2 
Parameter Value 

 ௠ 0.93ߟ

௠݂௢௧௢௥௟௢௦௦ 1 

ሶܸ௧௢௧,௠௔௫ 12.2531 (kg/s) 

 
Table A.2.5.3 Parameters for the DX coil model 

Parameter Value 

ܽ 0.0008029 

ܾ -1.508 

ܽ଴ -6.27e-7 

ܽଵ 1.41e-4 

ܽଶ -1.14e-2 

ܽଷ 0.378 

ܳ௔௜௥௠௔௫ 8.2157e5 (kJ/hr) 

 

 

Figure A.2.5.1 COP map of the DX coil as a function of the PLR 
 

Parameter Value 

ܽ଴ 1.0842 

ܽଵ -3.1077 

ܽଶ 3.2201 
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Table A.2.5.4 Max VAV supply air and hot water flow rates 
VAV Number Max. Air Flow Rate 

(kg/hr) 
Max. Water Flow Rate 

(kg/hr) 
1 3860 388 
2 3962 399 
3 6969 701 
4 5588 562 
5 4775 480 
6 4734 476 
7 4978 501 
8 9245 930 

 
ARX Model for Building 101 Case Study 
A standard ARX (Auto-Regressive with exogenous input) model structure can be described by:  

ሻݐሺݕ  ൅෍ܽ௜

௡೤

௜ୀଵ

ݐሺݕ െ ݅ሻ ൌ෍෍ ௝ܾ

௡್ೕ

௝ୀଵ

௡ೠ

௜ୀଵ

ݐ௜ሺݑ െ ݆ሻ, (A.2.5.1) 

where ݕ denotes model outputs and ݑ௜, ݅ ൌ 1,… , ݊௨ are model inputs. Structure of the model, i.e. 
the set of values ݊௔, ݊௕ଵ, ݊௕ଶ and ݊௕ଷ for each zone, is selected based on the algorithms 
implemented in the MATLAB System Identification Toolbox. An initial guess for the model 
order is obtained using the Akaike’s information criterion (AIC) and further updated with several 
iterations to improve the quality of the data fitting and transient responses of the model.  
 
For the results shown in Figure 2.5.5(a), the coefficients of matrix A and B in Eq. A.2.5.1 are 
given by: 
 

A = [1      -1.7542      0.85752    -0.091517], 
 

B =	൥
0 0.060779				 െ0.096404					
0 െ0.49965						 	0.84993
0 2.174						 െ4.2875								

				
0.024017
െ0.18496
2.127

൩. 

 
The model inputs associated with the above B matrix are supply air temperature, supply air flow 
setpoint, and ambient temperature, respectively. 
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Figure A.2.5.2 Flow chart of MPC operation with state observer and its interactions with the 

TRNSYS model 
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(a) Excitation signals for air flow setpoints 

 

 
(b)  Excitation signals for reheat valve positions 
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(c) Ambient Temperature 

Figure A.2.5.3 Input signals for system identification of zones in UTRC L Building 
testbed (Data: Nov. 25, 2011; Room: CR27) 
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Appendix 3.2 
 
Building 101 Simulation Based MPC Study

 
Figure A.3.2.1 Example AMPL code for Building 101 MPC case study 
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Appendix 3.4 
 
As noted by Rawlings and MayneA1: 
 

“Model predictive control has its roots in optimal 
control. The basic concept of MPC is to use a 
dynamic model to forecast system behavior and 
optimize the forecast to produce the best decision 
– the control move at the current time” 

 
The successful implementation of this idea requires a dynamic mathematical model that can 
simulate the future behavior of the system with acceptable accuracy. In particular, it may be 
necessary to incorporate estimates of the future disturbances applied to the system. Secondly, we 
must be able to ‘solve’ the resulting optimal control problem quickly and accurately so that the 
required control value is available in a timely way. Thus, it is of interest to study the underlying 
control problem(s) and their numerical solution. 
 
In this Section we consider several optimal control formulations for energy/cost-efficient cooling 
of a simple, single-zone room. To focus ideas we consider a scenario with 

 exterior wall  
 thermal storage- high thermal capacitance features of the building interior 
 room air - temperature, occupied zones 

 
A notional view of the room is shown in Figure (3.4.1); thermal energy storage is modeled in the  
solid circles which depict the 

● wall interior temperature (  ) 
● storage temperature (  ) 
● room-air temperature (  ) 

Four energy exchange mechanisms are modeled: 

1. conduction through the exterior wall from ( ) to  
2. radiant exchange between ( ) and  
3. convection from ( ) to  
4. convection from   to  

 
 
 
  

                                                 
A1 J.B.Rawlings and D.Q.Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI, 
2009 

Ti

Ts

Ta

Ti Ta

Ti Ts

Ti Ta

Ts Ta
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Figure  A3.4.1 Notional View of Single Zone 

 
Four energy exchange mechanisms are modeled: 

1)    - conduction through the exterior wall from to  
2)     - radiation  from  to   
3)  - convection from to  

4)  - convection from to  

 
With these energy-exchange mechanisms, the lumped dynamic model is 

   

   

   

   
where the  values  are thermal capacitances, and  is the cooling delivered 

to the room-air using electrical input power  . 
 
The conduction term is given by a simple one-dimensional model as 

   

Radiant exchange between the two interior surfaces is modeled as 

 

 
If the surface temperatures are reasonably close, the radiant exchange can be approximated by 
the linear model 

qcond Ti Te

qrad Ti Ts

qconv_ i Ti Ta

qconv_s Ts Ta

Ci

dTi

dt
   qcond  qrad  qconv_ i 

Cs

dTs

dt
  qrad  qconv_s 

Ca

dTa

dt
  qconv_ i  qconv_s C(u) 

Ck (k  i, s, a ) C u 
u

qcond 
k A


Ti Te  .
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where  is a suitable mean temperature. Finally, the convection terms are given by 
   

 
In summary, with the linearized model for radiant exchange the dynamics of our system can be 
written as 

     (A.3.4.1) 

where 
   
   

   (A.3.4.2) 

  
 
The specific structure of the -matrix may be deduced from the previous discussion. In the next 
section we formulate an optimal control problem for these dynamics. 
 

Optimal Control Problem 
Whereas the primary focus of our optimization study is minimal energy use, to avoid trivialities 
it is necessary to place some restrictions on the temperature histories. To this end we formulate a 
discomfort metric, namely 

  

       (A.3.4.3) 

where 
 

   

 
and where c is a zero-one function, the characteristic function of the occupied time interval. With 
Tmin = Tmax , the function  is a quadratic that penalizes variation in room-air temperature, and 
with Tmin < Tmax  there is a finite comfort range with zero quadratic penalty. 

T̂
qconv_ k  hA k

Tk Ta  , k  i,s 

z
.

(t)  f t,z(t ),u(t)   A z(t)

k A

Ci 
Te (t)

0
C u(t) 

Ca























,



u(t)


{0} umin,umax  , and z(t) 

Ti (t)

Ts (t)

Ta (t)

















.

A

D  c
0

t f

 (t)(Ta (t),Tmin,Tmax ) dt ,

(T ,Tmin,Tmax ) 

T Tmin 2
T  Tmin

T Tmax 2
T  Tmax

0 otherwise,











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In formulating the power cost we admit time-varying power rates and define our cost-functional 
as 

       (A.3.4.4) 

 
 
where r > 0 is a given function specifying the time-varying cost of power. The parameters 

 admit a trade-off of the power-cost and discomfort metrics. 

   
We anticipate that the exterior wall temperature  ,  the power-rate , and the characteristic 
function  will be given over a 24 hour period and that the parameter  are given. We 

take   {h) and seek periodic boundary conditions  and a control function  to 
minimize the cost (A.3.4.4) subject to the dynamics (A.3.4.1 – 3.4.2). 
   

Necessary Conditions 
 We apply the Minimum PrincipleA2 A3 to our problem and begin by defining the variational 
Hamiltonian 
 
 

 

 (A.3.4.5) 
  
   

where  is given in display A.3.4.2 and the adjoint vector  is defined similarly. 

   The Minimum Principle requires that the scalar  ; we assume that   and normalize 
the adjoint system with the choice .  
    
Adjoint System 
Evolution of the adjoint ( ) is governed by the inhomogeneous linear system: 
  
   

       (A.3.4.6) 

                                                 
A2 G. Leitmann, The Calculus of Variations and Optimal Control, Plenum Press, 1981. 
A3 L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Mischenko, The Mathematical Theory of Optimal 
Processes, Wiley-Interscience, 1962. 
 

J[u] p r
0

t f

 (t) u(t) d t  D D ,

p ,D  0

Te r
c p , D  0

tf  24 z(0) z(tf ) u

H (t,0 ,z ,z,u) 
0

z











,
f0 (t,z,u)

f (t,z,u)









  z ,Az  a

C(u)

Ca

 0 p r(t)u  Dc(t)(Ta ) 

z

0  0 0  0
0  1

z



z (t)  ATz (t)

0
0

Dc(t)

Ta


















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Optimality 
We consider that part of the variational Hamiltonian that depends (explicitly) on the control (  
). Since the electrical power cost function  and the thermal capacitance of the air ( ) are 
positive, we factor these out 
 

     (A.3.4.7) 

where  (the cooling rate for a given power input) is modeled as 
 

    (A.3.4.8) 

 
Here the function  represents the coefficient of performance and is a given positive 
function of the applied power ( ).  In the following we scale the units of input-power so that  

; thus the time-varying weight (  ) in the cost-functional is the cost of maximum power. 
 
The Minimum Principle requires that we characterize the value(s) of the control that minimize 

 over the set  . Since  is continuous and the domain  is compact minimizers exist; 

since  is smooth there are four possibilities to consider for extremal control ( ): 

1. , which requires that  , 

2. , which requires that  , 

3. occurs at an interior point with 
 
 

4.  $, that is, the isolated point in  - zero power. 
 
Affine cop(u)  

We consider a case wherein 
   

To examine the possibilities we consider graph(s) of for generic values of  

 and for several values of   (see Figure A. 3.4.2) 

 
 

u
r(t) Ca



Ĥ (u)
 Ca

r(t)







H cont (u)  p Ca 


̂p0


u 

a (t)

r(t)









̂a (t )

 
C(u) ,

C(u)

C(u)  cop(u) u, u   {0} U,U   , 0 U U .

cop(u)
u

U  1 r

Ĥ  Ĥ 
Ĥ u*

u*   U
Ĥ

u
|umin

 0

u*  1U
Ĥ

u
|1 0

u*  uint

Ĥ

u
|uint
 0 and

2 Ĥ

u2 |uint
 0

u*  0 

cop(u)     u  ,  0.

Ĥ (u)

p, ,,  U ̂a
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Figure A.3.4.2 Graphs of  for several  values 

 
We note that interior minimizers are not feasible, since . Furthermore, there is a 

critical value of  such that for  the upper bound,   provides a global 

minimizer for , and for  the value  provides a global minimizer. This critical 
value is 
 

   

Optimal controls are bang-bang and  is a switching function with 

        (A.3.4.9) 

 
 
 Quadratic cop(u)  

We now consider a case wherein 
   
with data specifications: 

   

   

  

 C  (u) |uU cop(U )U cop (u) |U 0   

Ĥ (u) ̂a

uint  0 U

̂a  ̂a
crit ̂a  ̂a

crit u U  1

Ĥ (u) ̂a  ̂a
crit u  0

̂a
crit 

̂p 1

r(t) C(1)
 0 .


S(a )


̂a

crit 
a

r(t)







u*(t) 
0 if S(a (t))  0

1 if S(a (t))  0 .









cop(u)     u   u2

cop(0)    0
max
[U ,U ]

cop(u)  v 

argmaxcop  , 0 U   U .
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From these specifications we find that: 

   

The final specification guarantees that  is an increasing function for . Clearly, it 
would not make sense to use more power if it produced less cooling. 
 
 For current purposes, as well as later discussion, it's useful to exploit the general structure of the 
variational Hamiltonian  (A.3.4.5) and to interpret the -operation geometrically. The 
control ( ) dependent part of the variational Hamiltonian (A.3.4.5) is 
  
   

  

 
The vector on the right in this inner-product is the (augmented) state-rate and captures the time-
rates of the control-dependent parts of the cost function and the state. Since  it can be 
safely factored. The locus of admissible points is shown in Figure 3.4.3. Note that the other terms 
in the variational-Hamiltonian are independent of the control and do not affect the  
operation. 

 
Figure 3.4.3 Velocity set 

 

Next, consider a fixed vector with components , where   (see Figure 

A.3.4.4). 


 

2(v  )


 0 and  

(v  )

2  0 .

C(u) u U  1

argmin H
u

Hc (u) 
0

a











,

p r(t) u

C(u)

Ca


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





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 r(t)
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
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
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

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p u
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Figure A.3.4.4 Adjoint vector in state-rate space 

 

The orthogonal complement  is the subspace of vectors orthogonal to (the span of)  

and for points in this subspace we have . Any translation of this subspace along the  
direction has , a positive real, whereas any translation along the opposite direction is a 
set of points with negative real values for the function . 
 

 
Figure A.3.4.5 Adjoint vector and velocity set 

 
The ideas underlying Figures A.3.4.3 & A.3.4.4 are combined in Figure A.3.4.5.  From this 

analysis we find there are two critical values of : 

   

{̂a}
 ̂a ,

Hc  0 ̂a

Hc (u)  
Hc

̂a


̂a

I 
p

  2  3 2  0 ,
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and 

   

The results of the -operation are 

   

where 

   

 
Transversality 
For our periodic boundary condition on the state, the transversality conditionsA4 are: 
 
        (A.3.4.10) 

 
Computational Approaches: Affine cop(u)  

The combined state/adjoint system along with the periodic boundary conditions on  
constitute a boundary-value in six dependent variables. In principle, one could try to use a 
shooting method (for multiple shooting see Stoer and BulirschA5). However, the Hamiltonian 
structure of the state-adjoint system implies that the combined eigenvalues occur in symmetric 
pairs about the imaginary axis. Indeed, for typical system parameters we find the eigenvalues of 
the state/adjoint system are: 
   

For the fastest growing of these over the time interval  the growth is  

   

While a parallel-shooting approach may mitigate the computational sensitivity, it seems that any 
approach based on solving the boundary-value problem ab initio is likely to be a challenge. 
 
NLP Formulation (Affiine cop) 
 

The Maximum Principle has revealed that an optimal control takes only the values in  We 

assume there are  (a  finite-number) of switches ( i.e. no chattering junctions).  Of course, we 
do not know the value . Since the switching function depends on the adjoint ( ) and since 
the adjoint variables satisfy a periodic boundary condition, we further assume that on the initial 
and final sub-arcs the optimal control has the same value ( ) so that 

,  and the number of switches is even. 

                                                 
A4 J.L. Speyer, Periodic Optimal Flight, Journal of Guidance, Control, and Dynamics, (19) 1996, 745-755. 
A5 J.Stoer and R.Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1992,  Chap. 7 

̂a
II 

p

  2  3


p

C  (u) |
uU1

 0

minH

u*(t) 

0 if ̂a (t)  ̂a
I

uint if ̂a
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1 if ̂a
II  ̂a (t) ,




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





uint 

3









3







2


p  ̂a

3
.

z (t f )  z (0) .

(z,z )

  0.015 / h,  0.153 / h, 19.579 / h .
0,24h 
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0,U .

N
N a

u*  0
S(a (0))  S(a (t f ))  0 N
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With this structure in mind we formulate a (family of) finite-dimensional nonlinear programming 
problem(s) (NLP) wherein the unknowns are the initial states and the switching times, the cost 
functional is  (3.4.4) and the equality constraints are the periodic boundary conditions, viz: 

. The parameter of the family of problems is . We numerically solve the 

initial-value problem (A.3.4.1 and A.3.4.2 with the initial states), alternating between cooling-off 
( u*(t)  0  ) and cooling-on ( u*(t) U  ) sub-arcs as specified by the switching times. For this 
purpose it's important to ensure the switching times are monotone increasing; we impose a 
minimum separation time between consecutive switch times. In the NLP setting this is realized 
as a set of ( ) linear inequalities.  
 
A solution that emerges from this sequence of NLP problems can be tested by the Minimum-
Principle analysis. This becomes computationally feasible because with the switching points 
known one can formulate conditions on the costate  Such an approach was 
demonstratedA6. 
% 
 
Two Cooling Periods:  
As an instance of an NLP formulation, we consider a problem with four switch points. The NLP 
problem has seven variables and three equality constraints (periodicity of the temperatures - 

 . The variation of power-cost with time-of-day is shown in Figure A.3.4.6 

 
Figure 3.4.6 Power Cost function  

 

                                                 
A6 J.Z.Ben-Asher, J.A.Burns, and E.M.Cliff, Time optimal slewing of a flexible structure, Journal of Guidance, 
Control, and Dynamics, (15) 1992, 360 - 367. 

J
z(t f ) z(0)  0 N

N 1

z (0).

N  4

Ti ,Ts ,Ta

(r(t))
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A Matlab code was implemented and the active-set algorithm of fmincon [opt_toolbox] was 
used to solve the NLP problem. The NLP problem was numerically challenging; perhaps 
reflecting some issues in the dynamic model (comments later). We imposed a heavy weight on 
the discomfort metric ( ); 
   

The electrical power was limited to 20 w and produced a maximum cooling of 140 w which 
reduces the air temperature at 2.7 oC / h. The thermal capacitance of the air is relatively small, 

with 
Ci

Ca

 9  and  
Cs

Ca

10 . We conjecture that the relatively low control authority makes the 

periodicity requirements on Ts and  Ti  particularly challenging. 
 
One result is shown in Figure A.3.4.7. The (solid) black line represents the 'exterior' temperature 
( Te ); this is part of the problem data. The (dash-dot) red box defines the 'comfort constraint - the 

zone-air temperature (Ta - the (solid) red-line) is supposed to be in the box during the 'occupied 
time' (7.5 <= t <= 18.5). This specification is also problem data. The (solid) blue line is the 
interior wall temperature ( Ti  ); it is conductively coupled to the exterior temperature. The 

(solid) green line is the temperature of the storage mass ( Ts). Note that whereas the state 

histories Ti  and Ts are smooth, the history of Ta  is only piecewise smooth since it is explicitly 
driven by the (discontinuous) control. 
 
At t = 0, the interior wall temperature (Ti ) is the highest so it begins to decrease, while the 

storage wall temperature ( Ts) is lowest  and begins to increase. The air, initially at an 
intermediate temperature, exchanges energy with both of these elements and begins a slow 
decrease.  At   t = 03:32 the control comes on and continues until t = 07:16;  Ta  is reduced to 

near the comfort lower bound at T  22oC.  Ti  , and Ts are also decreased toward local minima. 

As the exterior temperature ( Te ) rises the other temperatures are driven upward until at t = 13:05 

when Ta approaches the upper comfort bound. A second cooling period begins and lasts until 
20:34. Lastly, with the cooling off and the exterior temperature decreasing the variables 
Ti ,Ts andTareturn to their initial values. Cooling uses 224 wh of energy and the power-cost is 

0.4242 (units). The discomfort metric is quite small; D 1.1009 . Decreasing the weight D 

by several orders of magnitude has little effect on the state/control histories. With D 1 the 

state Ta begins to exceed the upper bound Tmax . 
  

D
p  1 and D  1.1004 .
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Figure A.3.4.7 Temperature histories with two cooling periods 

 
Three Cooling Periods: N=6 
The results from the Two Cooling Period case were used to initialize a case with three cooling 
periods. As seen in Figure A.3.4.8 Ts begins slightly higher than the previous case, the initial 
cooling period begins significantly earlier at t = 01:54 and continues until t=07:10.  With the 
cooling off, the zone-air temperature reaches the upper comfort level at 13:34 and the cooling 
comes on briefly until 14:01.  The zone-air temperature again rises to the upper comfort level 
and the cooling comes on for the third time at t=15:16.  The effect of the additional cooling 
period is to maintain the zone-air temperature near the upper comfort level. 
 

 
Figure A.3.4.8 Temperature histories with three cooling periods 

 
Four Cooling Periods: N=8 
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The results from the Three Cooling Period case were used to initialize a case with four cooling 
periods. Here (see Figure A.3.4.9) the initial cooing period  (01:37, 07:16) is slightly modified 
from the previous case. The 2nd and 3rd  cooling periods are brief (approximately 1/2 hour) and 
effectively maintain the zone-air temperature near the upper comfort level. 

 
Figure A.3.4.9 Temperature histories with four cooling periods 

 
Five Cooling Periods: N=10 
The results from the Four Cooling Period case were used to initialize a case with five cooling 
periods. In this case the final cooling period begins after the occupied period (see Figure 
A.3.4.10) during the period of lowest power-cost (see Figure A.3.4.6). Note that the (red) Ta  

trajectory passes though the upper-right corner of the comfort-constraint box. If the 8th  switch 
(off at t    17 :28 ) had been a little earlier, the zone-air temperature would have exceeded the 
upper-comfort bound; if it had occurred a little later additional high-cost cooling would have 
been applied. This result is perhaps from a different family of local minima than was seen in the 
earlier cases. It must be noted, however, that due to the minimum-switch-time constraint, the N  
-family of NLP problems are not nested.  Thus, for example, an N  8 solution can not be 
trivially made feasible for an N  10 problem. 
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Figure A.3.4.10 Temperature histories with five cooling periods 

 
Summary 
The performance attained in the four cases is summarized in Table A.3.4.1;  switch times are 
summarized in Table A.3.4.2. We see that the additional cooling periods lead to sequentially 
lower power-costs but that the trend in energy-used is not monotonic. In these numerical results 
none of the minimum-time-spacing constraints were active. 
 
There is no claim that the NLP solutions presented here are actual minimizers. The optimizer 
stopped because the changes in the NLP parameters or the cost functional were sufficiently small 

( 04

10 ). We have not verified that any of the candidate switching sequences satisfy the 

Minimum Principle. 
 

Table A.3.4.1 Summary of Results 
Cooling Periods Power-Cost Energy Used (wh) 

2 0.4241 224.1 
3 0.3561 224.6 
4 0.3246 217.0 
5 0.2819 203.9 

 
 

Table A.3.4.2 Switch Times 
 

Cooling 
Periods 

  2 3 4 

On 4.221 1.893 1.614 
Off 7.248 7.164 7.275 
On NA 13.668 13.414 
Off NA 14.026 14.119 
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On NA 15.270 15.148 
Off NA NA 15.695 
On NA NA 16.275 
Off 20.567 20.777 20.661 

 
 

NLP Formulation: Quadratic cop 
For this discretization we impose a grid on the time axis; each state is approximated as a 
continuous, piecewise linear function whereas each control is a piecewise constant. A simple 
case is shown in Figure A.3.4.11.  

 
Figure A.3.4.11 Generic state (temperature) and control discretization 

  
The NLP unknowns are the state values at the nodal points, and the control values on the 
intervals. The differential equations (A.3.4.1 – A.3.4.2) are (approximately) enforced by the 2nd 

order implicit midpoint rule.  Data values at the  node denoted as . With the 
state data we can evaluate  Consider one such panel: 
 

 

Figure A.3.4.12  Typical panel 
 

The state at the mid-point is the simple average  , whereas the  slope is 

 . The defect is the difference 

k th

x( k )

xm  xk1  xk  / 2

xc  xk  xk1  /  k  k1 
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    (A.3.4.11) 

Forcing the defect in Equation (A.3.4.11) to be zero implements the implicit mid-point rule - it is 

 order accurate. The  defects ( 0) are imposed as equality constraints in the 

NLP problem.  

Since the defect constraint at the  panel depends only on the local states and controls (left and 
right), the Jacobian of the constraint-function for the NLP problem is sparse. In particular, for the 

 constraint we have 

   

 

     

 

   

 
Note that the Jacobian of these constraints is sparse; the constraint Ck  depends on the local 
values of the states and control. 
 
This numerical optimization scheme was implemented using the Matlab procedure fmincon 
with the active-set algorithm. The problem data are the same as in the Affine cop case but here 
we use the quadratic cop model with data   4.0, v  7.0,and   18 . 
 
Shown in Figure A.3.4.13 are the resulting state histories for the N=128 case. Note that the NLP 
problem has 512 unknowns and 384 equality constraints. We see that there are five cooling 
periods including one at the beginning (approximately [00, 04]) and one at the end 
(approximately [22, 24]). As in the affine cop case, the control switches in the late afternoon tend 
to keep the air-temperature near its upper bound, and the zone-air temperature exceeds the upper-
bound just as the occupied period ends at 1800 h. 

2nd Nstates  Npanels

k th

k th

ck (Z )

 xk


I

 k  k1  
1

2

 f (t, x,u)

 x
|m

ck (Z )

 xk1

 
I

 k  k1  
1

2

 f (t, x,u)

 x
|m

ck (Z )

 uk

 
 f (t, x,u)

 u
|m
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Figure A.3.4.13 State histories for N=128 

 

 
Figure A.3.4.14 Control history for N=128 

 
The corresponding control history is shown in Figure A.3.4.14. The dashed red-line is the power-
value for max cop. Recall that our optimal control analysis dictates that optimal controls should 
never be less that this value. The NLP results display this feature on the first, third and fifth 
control-on arcs, but not on the second and fourth control-on arcs. At this time we are continuing 
to study the results. 
 

Max u 
We study an open-loop optimal control problem for energy efficient cooling of a simple room.  
The goal is to provide insights for the development of an implementable control scheme based 
on a Model Predictive Control strategy. In this version the cost function includes a term 
 F(maxt u(t)) 
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that is, a term depending on the peak value of the control.  This model captures a relatively 
simple version of peak-demand pricing. 
 
In this problem the upper-bound on the control is no longer part of the problem data but is an 
unknown to be found as part of the problem solution. We transform the problem to a standard 
optimal control setting by augmenting the unknown (U  ) to the state with trivial dynamics; the 
upper-bound is now a state-dependent control constraint 
 

 
U  0 , u(t)U  0 .       (A.3.4.12) 

The additional dynamics indicate that U  is an unknown constant.  The dynamics of the original 
states are as given in Equations (A.3.4.1-A.3.4.2), whereas the cost functional (A.3.4.4) is 
modified to 
   

 J[u]  F(U) p r
0

t f

 (t) u(t) d t  D D .     (A.3.4.13) 

   

H (t,0 ,z ,U ,z,U,u)  z ,Az  a

C(u)

Ca

 0 p r(t)u  Dc(t)(Ta )   uU  .  
          (A.3.4.14) 

The last term in (A.3.4.14) accounts for the state-dependent control constraint;   is the Valentine 
multiplierA7.  The adjoint system for z  is the same as before, whereas for U  we have 

  U

.

  .       (A.3.4.15) 

On time intervals where u*(t) U ,   follows from
H

u
 0  , namely 

   
a(t)

Ca

C  (u) p r(t) ,      (A.3.4.16) 

otherwise   0 . 
 
The optimality condition is unchanged from the earlier analyses, since the added term in the 
variational Hamiltonian is zero (one or another of the factors must be zero). The transversality 
conditions for z  are  unchanged, whereas for U  we have: 

 
 U (0)  0, and U (t f )  F  (U ) .  

Combining with equations (A.3.4.15, A.3.4.16) we have: 

 

F  (U )  U0

t f

 (t) d t  pr(t)
a (t)

Ca

C  (U )










t|u*(t )U d t .   (A.3.4.17) 

Equation (3.4.17) is the optimality condition for the control bound U . 
 
Modeling of external disturbance  

                                                 
A7 F.A. Valentine, The Problem of Lagrange with Differential Inequalities as Added Side Conditions, University of 
Chicago Press, 1937. 
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As the name implies, Model Predictive Control requires a model for the future behavior of the 
system including, where appropriate, the behavior of any external loads. We have studied the use 
of an Internal Model to characterize important unknown heating loads. The discussion is framed 
in terms of a single-zone model. 
 
A simple thermal model for a room includes a number of interacting systems. To focus ideas we 
consider a (summer) cooling scenario with 

 exterior wall  
 thermal storage- high thermal capacitance features of the building interior 
 room air - temperature, occupied zones 

 
A notional view of the room is shown in Figure A. 3.4.15; thermal energy storage is modeled in 
the  solid circles which depict the 

● wall interior temperature (  ) 
● storage temperature (  ) 
● room-air temperature (  ) 

Four energy exchange mechanisms are modeled: 
5. conduction through the exterior wall from ( ) to  
6. radiant exchange between ( ) and  
7. convection from ( ) to  
8. convection from   to  

 
Figure  A. 3.4.15 Single zone with solar load 

 
Four energy exchange mechanisms are modeled: 

1)    - conduction through the exterior wall from to  
2)     - radiation  from  to   

3)  - convection from to  

4)  - convection from to  

 
With these energy-exchange mechanisms, the lumped dynamic model is 

   

Ti

Ts

Ta

Ti Ta

Ti Ts

Ti Ta

Ts Ta

qcond Ti Te

qrad Ti Ts

qconv_ i Ti Ta

qconv_ s Ts Ta

Ci

dTi

dt
   qcond  qrad  qconv_ i 



January 2013 

165 
 

 Cs

dTs

dt
 qrad  qconv_s  qsolar   

 Ca

dTa

dt
 (qconv_ i  qconv_s  qu )  

   

where the  values  are thermal capacitances, and qu   is the cooling delivered to 

the room-air using electrical input power  . 
 
The conduction term is given by a simple one-dimensional model as 

   

Radiant exchange between the two interior surfaces is modeled as 

 

 
If the surface temperatures are reasonably close, the radiant exchange can be approximated by 
the linear model 

   

 
where  is a suitable mean temperature. The convection terms are given by 
   

Finally, the disturbance is given by qsolar  an unknown solar source applied to the storage mass. 
Since our interest here is in estimating exogenous we posit a simple cooling control scheme 
 qu (t)  K(Ta (t)Tref )   

where K  0 and Tref   is a specified reference temperature.  
 
A Simulink diagram of the model is shown in Figure A. 3.4.16.  Note that we have assumed that 
the zone air temperature is available noise-free. 

Ck
(k  i, s, a )

u

qcond 
k A


Ti Te  .

T̂
qconv_ k  hA k

Tk Ta  , k  i,s 
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Figure A. 3.4.16 Simulink diagram of the room model with disturbance 

 
The model in Figure A.3.4.16 has two inputs:  

1) the solar load ( qsolar ), and  

2) the external wall temperature ( Te  ),   
 four outputs: 

1. noisy measurements ( ynoisy  ) of the pair ( (Ts,Ta )  ),  

2. the full state x IR3 ,  

3. the cooling load qu  , and 
4. the required electrical power u  . 

 
Our objective is to construct an estimate for the solar load based on measurements/observations 
of Te ,qu , and ynoisy . To this end we create an augmented system consisting of the original closed-

loop system with three states augmented with an additional state(s) that model the solar load. 
According to the Internal Model PrincipleA8 the dynamic description of the augmented state 
should be compatible with the expected behavior of the disturbance. Our first model is the 
simplest. 
 
First-order lag: 
In this case the additional state ( sd ) satisfies the ODE 
 
  sd (t)  sd (t)  
where   0  is selected so that the system is stable, but not too stable. We're thinking that the 
disturbance is constant, but not too constant! This formulation has been used by O'NeillA9 in a 

                                                 
A8 B.A. Francis and W.M.Wonham, The internal model principle for linear multivariable regulators, Applied 
Mathematics Optimization,  2 (1975), no. 2, 170 - 194. 
A9 Z. O'Neil, S. Narayanan, and R. Brahme, Model-based thermal load estimation in buildings, Proceedings of the 
Fourth National Congress of the International Building Performance Simulation Association, August 2010, 474 – 
481. 



January 2013 

167 
 

multi-zone building. To formulate the associated Kalman filter we must specify noise 

covariances on all of the states, including sd . 
 
Second-order oscillator: 
Given the periodic nature of the solar disturbance, it might be preferable to choose an oscillatory 
model for the disturbance, viz 
 
 sd (t) 2  n sd (t) n

2 sd (t)  0 .  

Here we could exploit the known (nominal) period for the solar input, i.e.   n 
2
24h

 . 

We must also specify a value for the damping ratio 0  1 . 
 
Kalman filter 
For each  model  we construct a Kalman filter for the appropriately augmented system. The filter 
requires four inputs: 

1) the cooling load ( qu  )provided to the system, 

2) the external wall temperature (Te ) applied to the system, 

3) the noisy measurement of the storage temperature ( Ts), and 

4) the noisy measurement of the zone-air temperature ( Ta  ). 
 
An (A, B,C, D) model for the filter was constructed for the filter using the Matlab routine 
kalman.  A Simulink diagram of the system with the filter is shown in Figure A.3.4.17. 
 

 
Figure A.3.4.17 Simulink diagram of combined system and filter 

 
The system in Figure A.3.4.16 was run and adjustments were made to the control gain and 
reference temperature in and to the initial temperatures (Ti (0), Ts (0), Ts (0)) to produce 
reasonable periodic response histories over a 96 hour period. These are shown in Figure A.3.4.18 
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Figure A.3.4.18 Time histories of the (3) states 

 
First-order lag: 
The measured (noisy) values for the storage temperature along with the filtered values are 
shown in Figure A.3.4.19 The transient in the filtered value from its initial-value  24C takes 
about 8 hours but then tracking is reasonable. 
 

 
Figure A.3.4.19 Sensed and estimated storage temperatures 

 
Similar results for the zone-air temperature are shown in Figure A.3.4.20 
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Figure A.3.4.20 Sensed and estimated zone-air temperatures 

 
Our main result, the tracking of the solar-load, is displayed in Figure A.3.4.21 . Here we see that 
in addition to the initial transient, there is a lag between the true and the estimated values. It may 
be that additional tuning (e.g. adjusting the process noise value) can improve the results. 

 
Figure A.3.4.21 Actual and estimated solar loads (first-order model) 

 
Second-order oscillator: 
Here again we did some modest tuning of the parameters (process noise for the pair (sd , sd). In 
this case (see Figure A.3.4.22) there is a substantial initial transient but the eventual tracking is 
much improved over the first-order case. The results for smoothed estimates of Ts and Ta  are 
indistinguishable from the first-order case (Figures A.3.4.19 – A.3.4.20). 
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Figure A.3.4.22 Actual and Estimated Solar Loads (Second-order model) 

 
Conclusions 
This preliminary study demonstrates that it is feasible to reconstruct unknown disturbance inputs 
based on measured data. Note that we do require an accurate model of the system, including the 
vector that characterizes how the disturbance affects the system dynamics.  Note that we have 
assumed that the external temperature ( Te  ) is known exactly. 
  
 Using a first-order disturbance model results in a lag between the actual and the predicted solar 
loads. A second-order disturbance model produces better ultimate tracking, albeit with a large 
initial transient. The Internal Model Principle [Francis – op. cit.] suggests the use of higher-order 
models that better reflect the expected behavior of the disturbance. This extends the approach 
used in [O’Neill A9]. 
 
  

                                                 
A9 Z. O'Neil, S. Narayanan, and R. Brahme, Model-based thermal load estimation in buildings, Proceedings of the 
Fourth National Congress of the International Building Performance Simulation Association, August 2010, 474 – 
481. 
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Appendix 3.5 
 
Automatic Differentiation 
 
We provide some more detail on automatic differentiation (AD) of Matlab functions by 
considering two matrix functions: the Cholesky factorization algorithm (chol) and the matrix 
norm function (norm).  Differentiating the Cholesky factorization A = R′R leads to the equation 

R'R+R'R= A , (1)

which can be solved with a variation of the Bartels-Stewart algorithm, column-by-column, for 
the solution R  (see Algorithm 1 below). Note that the symmetry of the left hand side of equation 
(1) implies that A  must be symmetric for the Cholesky factorization to be differentiable. This is 
equivalent to the concept that the Matlab function chol is a mapping between the space of 
symmetric positive definite matrices to the space of upper triangular matrices with positive 
diagonal entries. As in Lyapunov equations, the definiteness of A characterizes the definiteness 
of R .  

 
ALGORITHM 1: Sensitivity of the Cholesky Factorization 
Input: A positive definite, Hermitian matrix A and its Hermitian parametric derivative A .  
Output: The Cholesky factor R and its parametric derivative R  that satisfies (1).  

)*2/( 111111 RAR   ;  

nnn RRRAR :2,11111:2,1:2,1 *)/(   ;  

for i = 2 … n do  
  similarly for each row  
end  

 
The remainder of this section discusses the treatment of 

2
   . There are two challenges here. 

Since we need to differentiate the largest singular value, there is the issue of non-differentiability 
of the maximum function.  This is treated by computing the right Dini derivative. The second 
challenge is in the calculation of derivatives of singular values. This is achieved by first 

calculating σ1 = ∥A∥2. The calculation of the dominate left and right singular vectors can be 
found noting that σ1 is an eigenvalue of a matrix involving A with dominant singular vectors 
contained in the eigenvectors. Thus, we have the relationship  

 
Now, differentiating A = UΣV ′ and looking at the (1,1) entry of the matrix equation  

VVUUVAU '''    
and using the differentiated orthogonality relationships 01

'
1 uu   and 01

'
1 vv  , leads to the 

formula for the derivative of the norm: 

1
'
11 vAu    
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