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Report Abstract 
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in successfully developing and demonstrating the effectiveness of diagnostics and decision support tools 
for subsystem diagnostics (RTU, DX, AHU-VAV and building envelope subsystems) and fault 
prioritization. 
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Subtask 4.3:  Whole Building Diagnostic & Decision Support 
 
Deliverable #19: Demonstration of easy-to-use tools and cost effective technologies for operators to 
continuously diagnose and optimize performance during extended operation of AERs. 
 
Brief Summary:  The team has demonstrated a number of diagnostic and decision support tools that can 
enable cost effective whole building decision support for building operators.  For rooftop units (RTUs) 
Purdue has developed and demonstrated virtual sensors as a means of realizing a robust and low-cost 
approach to monitoring, detecting, and diagnosing faults.  Existing data and laboratory tests were used to 
assess the diagnostic methods for refrigerant and air-side faults, including faulty economizer operation, 
heat exchanger fouling, faulty refrigerant charge, compressor problems, etc. A video demonstration was 
created that demonstrates a diagnostic system for refrigerant charge and condenser fouling faults.  For 
AHU-VAV systems, Drexel has developed and demonstrated a diagnostic approach that utilizes pattern 
matching and principle component analysis methods and that does not require any fault data training and 
requires only 10-15 days fault-free training data (for each season).  The method was tested using data 
from three different buildings for winter, summer, and shoulder seasons.  Bayer demonstrated the 
application of two building envelope diagnostic techniques to the Building 101.  UTRC developed and 
demonstrated fault prioritization tools for the design and operational phases of a building.   The tool 
chains use a generic model based approach that can quantity the impacts of various faults on energy 
consumption as a means of prioritizing corrective actions.  

 

Executive Summary 

HVAC systems in buildings are responsible for 14% of primary energy consumption and 32% of all 
electricity generated in the U.S.  For office buildings, HVAC energy consumption represents about 48% 
of the total primary energy usage (Pérez-Lombard et al., 2008).  Furthermore, energy use in the built 
environment is projected to grow at an average rate of 1.5% annually.  Previous studies have indicated 
that energy consumption in commercial buildings is as much as 30% higher than expected due to the 
presence of faults (Katipamula and Brambley 2005).  Automated fault detection and diagnosis (AFDD) 
can reduce this additional energy consumption, improve comfort conditions, and reduce costs for service.   

The goal of this project is to develop and demonstrate a library of diagnostics decision support tools 
that can enable cost effective diagnostics solutions for existing buildings.  Whole building diagnostic and 
decision support tools should robustly maintain building energy performance at an optimal level 
following commissioning of retrofitted buildings. In Budget Period 2 (BP2), the project teams have 
focused on two select building types: 1) buildings that employ packaged rooftop air conditioners (RTU) 
and 2) buildings that utilize built-up air-handling units (AHU) with variable-air-volume (VAV).  These 
building types were selected to be representative of the 10-county EEB-HUB region.  The specific goals 
for BP2 were:  1) develop, evaluate and implement sub-system diagnostics solutions as both embedded 
and add-on solutions and 2) develop and evaluate whole building decision support tools and systems for 
corrective action prioritization by building decision makers (including facility operators and sub-system 
service providers).  The Purdue team focused on RTU and DX equipment, the Drexel team addressed 
AHU-VAV systems, Bayer studied faults for envelope systems and  the UTRC addressed whole building 
decision support tools and systems.  In subsequent years, the library will expanded to include tools that 
cover all of the representative equipment, envelopes, and systems within buildings for the EEB-HUB 
region and whole building demonstrations of the diagnostic implementations will be performed. 
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In BP2, the team members have successfully developed and demonstrated the effectiveness of 
diagnostics and decision support tools for subsystem diagnostics (RTU, DX, AHU-VAV and building 
envelope subsystems) and fault prioritization.  These tools can enable cost effective diagnostics solutions 
for existing buildings.  Both existing literature and our study have demonstrated that these developed 
tools can help to reduce the HVAC system energy consumption by up to 30 percent. Therefore, this 
subtask directly support the Hub’s goal of “… reduce annual energy use in the commercial buildings 
sector in Greater Philadelphia by 20 percent by 2020.” 

The following sections provide a quick overview of the major accomplishments by the UTRC, Purdue, 
Drexel, and Bayer teams.  

A. Fault Prioritization Tool Chain (UTRC team) 

A.1 Fault Prioritization Tool Chain for Design Phase (UTRC, Export Controlled - ECCN: EAR99) 

Identifying critical failure modes affecting building performance (such as energy consumption) is 
important, as it can lead to actions to eliminate them, if possible, or can be used for designing a suitable 
monitoring and diagnostic system. Typically, expert judgment is used to guess critical faults, which leads 
to over instrumented, complex, and expensive building performance monitoring and diagnostic systems. 
In this BP2, we demonstrated a tool chain that uses a building performance simulation (BPS) tool to 
perform failure mode effect analysis and also developed a systematic process to identify and prioritize 
critical faults. 

 

Figure 1 Systematic process to identify and prioritize critical faults 

The current state-of-the-art building performance simulation (BPS) tools do not provide the ability to 
model and simulate faults occurring in buildings. In BP2, we developed a building system fault modeling 
library in TRNSYS, and demonstrated its applicability by conducting failure mode effect analysis on 
building 101. The fault model library is now readily deployable, generic, and scalable to any building size. 
The library includes both abrupt and degradation faults. 

We also developed and demonstrated a process for quantifying the impact of individual as well as 
fault couplings. We demonstrated both the process and the use of the fault library on building 101. The 
findings show that a stuck outside damper appears to be one of the most important faults and causes 
significant increase in energy consumption in both summer and winter seasons. In addition, it has been 
shown that fault couplings can boost the effect of faults that are individually not significant, which is not 
intuitive: e.g. in summers, not shutting down heating and a stuck heating valve in the AHU are 
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individually insignificant. However, if these two faults happen at the same time, their effect is significant. 
Such findings are not always intuitive. 

        

Individual fault prioritization – summer              Couple fault prioritization -- summer 

Figure 2 Fault prioritization for summer season 

A.2 Fault Impact Assessment Tool Chain for Operation Phase (UTRC, Export Controlled - ECCN: 
EAR99) 

Assessing the energy impacts of ongoing faults in an operational HVAC system provides valuable 
information to the facility manager for efficient resource allocation. This information becomes even more 
critical in large commercial building where several faults may coexist at a given time. In the BP2, UTRC 
developed a reusable tool chain to assess the impacts of HVAC component faults on energy consumption. 
This tool chain is intended to assist building managers in making critical building operation decisions.  
The scalability of our approach can be attributed to specialized data driven models (Graphical Models), 
which form the basic building blocks of the tool chain. These data-driven models do not require detailed 
building or equipment specific information and can be learned using limited operational data, while still 
being accurate enough to obtain energy impacts under different fault conditions.  

Our approach works by decomposing the HVAC system into smaller subsystems and learning 
graphical models on those. Figure 1 shows the models for the Economizer and the Heat Exchanger 
subsystems. A fault in the upstream subsystem is propagated (as shown on figure below) to downstream 
subsystems to assess the overall energy impact of the fault.  

 
Figure 3 Data-driven graphical models for HVAC subsystems and the fault propagation scheme 
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As a proof of concept, the data driven graphical models were used to estimate energy impacts of 
faults such as AHU outside air damper stuck and Heating coil valve stuck in the building-101 simulation 
environment.  In Figure 4, we compare the excess energy consumption due to a stuck damper,  estimated 
using the proposed method with that obtained from a detailed TRNSYS model for building 101, along 
with the baseline (no-fault) energy consumption. Clearly, the proposed fault assessment method does a 
reasonably good job of estimating the energy consumption under fault conditions, when compared with 
the TRNSYS model.   

 
Figure 4 Benchmarking the energy impact based on the proposed approach with that of detailed TRNSYS model 

A.3 RTU laboratory and field testing (UTRC, Export Controlled - ECCN: EAR99) 

The experimental data are needed for development of a robust diagnostics methodology as well as for 
its validation and demonstration.  Experimental data were generated by UTRC in well controlled 
environmental laboratory tests and also in more realistic field conditions.  The Carrier 7.5 ton RTU 
48HCDD08 (Figure 5) was used for refrigerant charge diagnostics testing with 70%, 75%, 80%, 85%, 
100%, 140% charge levels. RTU testing conditions are shown in Table 1. 

    
Lab RTU                                                     Field RTU 

Figure 5.  Tested RTU systems 

Table 1.  RTU testing conditions in the lab 

Testing Matrix 
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IA flow, 
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The Carrier 10 ton RTU 50PG-C12-D-60-S4 installed on a UTRC building rooftop was used for field 
testing. The RTU has no heating function, has an interlocked modulating outside-air and return-air 
dampers with a damper position. The experimental data with variable charge, condenser flow and damper 
position were generated for the state-of-the-art RTU in field conditions. Table 2 contains operating ranges 
for the conducted tests for 70%, 80%, 90%, 85%, 100% and 120% charge level; Condensed flow 
restriction for 0%, 30%, 43%, 56% and damper position 0, 25%, 50%, 75%, 100%. All the tests have 
been done except the case of 120% charge and 56% condenser air reduction because of cold ambient 
conditions in October of 2012.  

Table 2.  RTU testing conditions in field tests 

Refrigerant charge levels 70%, 80%, 90%, 100%, and 120% of normal charge 

Condenser air flow rate reduction 0%, 30%, 43%, and 56% of normal flow 

Outside-air damper opening 0%, 25%, 50%, 75%, and 100% 

 

The detailed data from lab and field tests were transferred to Purdue University team for diagnostics 
method validation. 

B. RTU AFDD (Purdue University) 

The primary goal of this work was to develop and demonstrate automated fault detection and 
diagnostic (AFDD) implementations for rooftop air conditioners (RTUs) having fixed speed compressors 
and a DX system with a variable stage compressor.   In order of realize a cost-effective solution, virtual 
sensors are employed that utilize a model and low cost measurements in order to provide outputs that 
would be expensive to measure directly.  Specific accomplishments include:  1) laboratory and field 
testing to generate data for normal and faulty performance of RTUs; 2) assessment of the impacts of 
faults on system performance and operating costs, which is important for setting fault diagnostic 
thresholds; 3) development and validation of a number of virtual sensors; 4) development of an active 
method of diagnosing economizer faults for RTUs; 5) development of an interface for presenting 
diagnostic information; and 6) development of video demonstrations for RTU diagnostics. 

B.1 Typical Fault Impacts for Cooling Equipment 

Figure 6 shows the effects of refrigerant charge level on cooling capacity and estimated annual 
operating costs for a number of different cooling systems determined from laboratory measurements and 
modeling.  The impact of charge varies with system.  However, in general, charge has a relatively small 
impact if it is within about 10% of the rated value.   The impact increases dramatically for units that are 
undercharged by 20% or more.  The impacts of air-side fouling for both the evaporator and condenser 
were also determined from laboratory measurements.  The impacts are relatively small if the air flows are 
within 10% of the nominal air flow.  This data is useful for establishing necessary accuracy for virtual 
sensors that can estimate refrigerant charge and air flow from other measurements. 
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Figure 6.  Capacity and annual cost ratios for different systems based on the refrigerant charge 

B.2 Example Virtual Sensors 

Figure 7a shows performance of a virtual refrigerant charge (VRC) sensor for laboratory data.  In 
general, charge predictions are within 10%, which is adequate based on the relatively small fault impacts 
within this range.   The VRC only requires four externally mounted temperature sensors to estimate the 
refrigerant charge at any given operating condition. 

Figure 7b shows accuracy of a virtual compressor power (VCP) sensor for a system that was tested 
with a variety of different faults, including evaporator and condenser air-side fouling, low and high 
refrigerant charge, liquid line restrictions, compressor valve leakage, and the presence of a non-
condensable gas in the refrigerant.  Overall, this approach provides very accurate estimates of compressor 
power regardless of the faults present.   Three temperature measurements are necessary to provide VCP 
sensor outputs. 

 

Figure 7.  a) Performance of VRC sensor based on tuned parameters; b) Performance of VCP sensor 
under no fault and fault conditions 
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In addition to compressor power, 
refrigerant mass flow rate is an important 
measurement for monitoring equipment 
performance and enabling fault detection and 
diagnostics.  However, a traditional mass 
flow meter is expensive to purchase and 
install.  Three different virtual refrigerant 
mass flow (VRMF) sensors were developed 
and evaluated in this study that use 
mathematical models to estimate flow rate 
using low cost measurements: 1) compressor 
map for refrigerant mass flow rate, 2) 
energy-balance method that employs the 
VCP sensor, 3) semi-empirical correlations 
for thermostatic expansion valves (TXV) 
that are based on an orifice equation.   
Differences between the three VRMF 
sensors can be used within a diagnostic 
system to isolate compressor faults since the 
accuracy of the energy balance model and 
expansion device models are independent of 
compressor flow faults.  Figure 3.34Figure 8 shows example comparisons of the three VRMF sensors 
with mass flow measurements.  With a simulated compressor valve leakage fault, the refrigerant mass 
flow rate is reduced compared to normal operation.  As a result, the compressor map over-predicts 
refrigerant mass flow rate, whereas the other VRMF sensors provide accurate flow estimates.  

Virtual sensors were also developed and evaluated for evaporator and condenser air flow, which can 
be employed for isolating heat exchanger fouling.  The different virtual sensors developed in this study 
were evaluated using both laboratory and field data for a number of different systems. 

B.3 RTU Economizer Diagnostics 

An active method for diagnosing common economizer faults is under development and some initial 
assessments have been made.  Laboratory test data was obtained for a range of ambient conditions and 
damper openings for method development and evaluation.  One of the challenges in performing 
diagnostics for RTU economizers is that some portion of the exhaust air from the economizer can be re-
circulated to the intake as depicted in Figure 9a.  This implies that a separate outdoor air temperature 
sensor would not be an accurate representation for the ventilation air temperature.  An even more 
challenging issue is that the mixed air conditions are often highly non-uniform because of a small mixing 
chamber and so a single-point measurement is not accurate.  Figure 9b shows highly non-uniform 
temperature conditions for a 60% open damper determined through the laboratory testing.  In order to 
realize a cost-effective measurement for mixed and ventilation air, an approach was developed for 
correcting single-point measurements that correlates the effect of damper position on the average 
temperatures for the cross section.  This virtual sensing approach improves diagnostic performance with 
no additional sensor costs. 

The diagnostic method being developed for economizers uses virtual sensors for outdoor-air fraction 
(OAF) and other temperature performance indices as inputs and employs rules for expectations for these 
outputs with open and closed damper positions.  Active testing would be employed to initiate open and 

Figure 8. Comparison of VRMF sensor outputs 
with compressor flow fault 
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closed damper positions when it is clear that faults exist and during an unoccupied period.  A Baysian 
classifier is used to isolate individual faults using rules established for a list of commonly occurring faults.   

  

Figure 9. a) Return-air recirculation present in the packaged air-conditioner economizer hood; b) Non-
uniform mixed-air temperature distribution at the evaporator inlet position with the outdoor-air damper 
60% open. The color scale ranges from outdoor-air temperature (blue) to return-air temperature (red) 

B.4 RTU Embedded Diagnostics Demonstration 

An implementation for embedded diagnostics applied to a laboratory RTU has been developed using 
the structure shown on Figure 10.  In the preprocessor block, transient input and output measurements are 
filtered out using a steady-state detector. Once measurements are collected, a fault detection step is used 
to determine if a fault has occurred. The FDD detection uses three types of virtual sensors; sensor level, 
component level, and system level. Sensor level means that real measurements (e.g., refrigerant pressure) 
are replaced with virtual sensors using lower cost measurements (e.g., refrigerant saturation temperature).   
Component level virtual sensors utilize component models with low-cost input measurements (e.g., a 
compressor map).  System level virtual sensors provide outputs for quantities that could not be 
determined solely using component level information, including overall refrigerant charge, cooling or 
heating capacity, and COP.  The outputs of the virtual sensors are processed by a fault detection classifier 
which compares outputs from the virtual sensors to expected values associated with normal behavior to 
evaluate whether a fault is present.  The fault diagnosis block determines the cause of the fault from a list 
of possibilities. Once, the existence of fault has been detected and identified, a decision block 
recommends the proper maintenance needed based upon economic considerations.  
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Figure 10. FDD block diagram for RTUs 

Initial video demonstrations have been developed for the laboratory RTU that illustrate refrigerant 
charge and condensing fouling fault diagnostics.  Figure 11 shows the interface that displays virtual 
sensor outputs along with capacity and COP impacts. The virtual refrigerant charge and condenser air 
flow sensors only require six temperature inputs: evaporating, condensing suction line, liquid line, 
condenser air inlet and condenser air outlet temperature.  For this particular demonstration, 75% 
refrigerant charge was used to simulate an undercharged condition, whereas the condenser air flow was 
normal. The capacity and COP ratio indicate 95% and 96% of normal performance for the current 
operation.  The results demonstrate that the impact of refrigerant charge on performance is relatively 
small for 75 % of the rated charge at this operating condition.   
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Figure 11. 75% refrigerant charge level & 0% condenser fouling level demonstration 

 

C. AHU-VAV Fault Diagnosis (Drexel team) 

During budget period two (BP2), the Drexel team worked to complete the following deliverables in 
an effort to advance AFDD for AHUs toward widespread commercialization.  Briefly, these three areas 
can be summarized as follows: 

 Completion of the Dynamic Fault Simulation Testbed for AHU-VAV systems 
 Development and demonstration of the Pattern Matching Principle Component Analysis 

(PMPCA) Fault Detection Method 
 Investigation of fault incidence and associated energy impacts via engagement with local 

industry and experimental data 

C.1 Dynamic Fault Simulation Testbed for AHU-VAV systems 

The dynamic fault simulation testbed (Figure 12) allows for the simulation of 51 discrete faults during 
any seasonal operating condition specified by the user.  Nearly all of these 51 faults can also be adjusted 
so different severities can be tested as well.  This testbed can now be used for comparison and analysis of 
AFDD strategies for this EEB HUB project, to identify the most effective AFDD methods as well as 
individual strengths and weaknesses of the methods.  Both the fault free and fault simulation capabilities 
of this testbed have been experimentally validated using ASRHAE 1312 experimental data and data 
obtained from NIST 6964 experiments and simulations.  Additionally, the testbed is being shared with 
other researchers as part of a “beta test”, so that it can help extend the research in this field beyond the 
scope of the HUB activities. 
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Figure 12.  The dynamic fault simulation testbed 

C.2  Development and demonstration of the Pattern Matching Principle Component Analysis (PMPCA) 
Fault Detection Method 

The Drexel team developed a novel fault detection technology for typical AHU systems.  This data-
driven technology utilizes machine learning techniques, including pattern matching and principle 
component analysis methods.  The following figure demonstrates the operation structure of this 
methodology.  

 

 Figure 13.  Operation flowchart of the PMPCA method  

This approach does not require any fault data training and requires only 10-15 days of fault-free 
training data (for each season).  No requirement for customization for different AHU applications is 
needed.   

In BP 2, various factors that affect the efficacy of this technology were investigated to optimize the 
performance of the technology:   
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Data Scaling / Preprocessing – The raw process data from the BMS arrives in many different units 
and magnitudes.  In order to prepare this data for analysis, it must be scaled to even out the impact of 
the different variables.  To do this, a few different methods were tested. 

Window Size – The length of the snapshot window and the historical windows must be the same for 
the purpose of the pattern matching methods. However, the optimal duration needs to be estimated.  
Shorter windows capture a specific operating condition more effectively, but also result in less data 
being used in the analysis, so a balance must be struck. 

Number of Historical Windows Required – Increasing the number of historical windows used to 
create the PCA model can result in a more robust model, but this can also result in the use of less 
similar windows in the model creation that could skew the model. 

Window Movement Rates – The rates at which the snapshot and historical windows need to be 
sampled were studied to consider the trade-off between accuracy and speed. 

Impact of Data Normality – The use of PCA requires an underlying assumption that the data is 
Gaussian.  This assumption is met to varying degrees by different training data and snapshot windows.  
The effect upon the results of the data normality was examined in this project. 

Historical Data Requirements – The quantity and quality of historical data plays a key role in the 
ability to perform accurate fault detection. 

Principal Component Retention – PCA-based methods are widely applied across many different 
fields in the literature, and a number of different component retention methods have been proposed.  
A number of these different methods have been investigated herein. 

These different variables, and the way they impact the efficacy of the PMPCA technology were all 
explored and summarized in Section 4.5.   

Three datasets as described below were used to evaluate the efficacy of the PMPCA technology: 

 Small office building experimental data from winter, summer, and shoulder seasons 
 Medium-sized office building experimental data from winter months 
 Small office building simulation data from the developed virtual testbed 

The developed data-driven PMPCA method was shown to detect nearly 90% of the AHU faults from 
the three datasets described above, with an overall false-alarm rate of less than 1% (details are presented 
in tables provided in Section 4.5).   

Understanding the true strengths and weakness of the PMPCA method requires the context of other 
existing or proposed AFDD methodologies.  Our literature review indicates that there are multiple papers 
that propose different AFDD techniques.  The difficulty with finding benchmarks to compare with is 
primarily due to the limited testing of the methods that is typically reported.  None of the papers identified 
in the literature provide overall false alarm rates or overall fault detection rates, so there are no widely 
available benchmarks against which to compare.   

The second aspect of evaluating diagnostic methods pertains to the potential for commercialization of 
the method.  To that end, a set of requirements were developed to help with the evaluation process: 

 Minimizing the customization required for different systems;  

 Trained using solely fault-free data from normal operation;   

 Computationally efficient enough for online monitoring;   
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 Robust enough to maintain accuracy throughout all operating conditions; 

 Able to detect abrupt as well as slowly-occurring degradation faults; 

 Able to detect both process faults as well as sensor faults; 

Using these criteria, many of the methods proposed, while insightful, may not be ready for 
commercialization.  The PMPCA method is qualitatively compared with the one reported by Wall et al. 
(2011), which was tested using some of the same ERS data utilized in this study.  Based on the 
performance data reported by Wall et al. (2011), the two methods (PMPCA method and the Wall et al. 
method) performed similarly, both effectively detecting the abnormalities in the data in a manner that 
corresponds to the severity of the fault.  Two potential difficulties with the Wall et al. method are the 
potential difficulty calibrating a threshold for the log-likelihood at which point a fault should be flagged, 
and the potential for a very high false alarm rate that is often observed in clustering FDD algorithms. 

C.3 Investigation of fault incidence and associated energy impacts via engagement with local industry and 
experimental data 

An investigation of the energy implications of AHU faults, combines analysis of experimental data 
with interviews conducted with local industry stakeholders.  The primary intent of the interviews was to 
gain further insight into fault occurrence probabilities, as they are observed in the field.  This type of 
information is essential for prioritizing the efforts of AHU diagnostic research, and also allows for 
increased accuracy when estimating the energy impacts and economic benefits of AFDD for AHUs.  
Beyond this primary goal of informing our fault incidence estimates, the interview process also provided 
feedback from industry regarding their needs and desires for effective AFDD.   

The ASHRAE 1312 data are also used to assess the energy impact of faults that typically occur in an 
AHU system.  By simultaneously running two identical AHUs side-by-side with the same loads, it is 
possible to calculate the difference in energy consumption when one is artificially injected with various 
faults.  Using the experimental data from three seasons (summer, winter, and shoulder season), it is found 
that the fault daily energy impact ranges from 10% up to more than 600%.  Faults related to the cooling 
coil valve have the highest energy impact for all three seasons.  For such a small AHU (3000 cubic feet 
per minute design supply air flow rate), the daily utility cost wasted by faults ranges from 1 dollar up to 
nearly 300 dollars. 

D. Envelope Fault Diagnostics (Bayer team) 

Analyzing building envelope faults helps to effectively address air leakage in and out of the building. 
This in turn helps to ensure acceptable indoor air quality and reduced energy consumption for heating or 
cooling. Many techniques have been developed to measure the air flow across the building envelope and 
characterize the envelope faults.  Some of the commonly used techniques are: Tracer Gas Test, Blower 
Door Test, Theatrical Smoke Test and Infrared (IR) Thermography.  

Two of the four techniques, IR Thermography and Blower Door Testing, were chosen to be 
conducted on the EEB HUB headquarters (Building 101). A report was generated for each test to 
diagnose and characterize faults in the Building 101 envelope. While the Blower door test helped analyze 
air leakage through the building envelope via HVAC penetrations and windows, the IR thermography test 
helped to identify the spots in the envelope which accounted for maximum heat loss through the envelope. 
Bayer generated a report that explains the objectives, advantages and disadvantages of each of four 
techniques mentioned above, obtained results from the Blower Door Test from another task, oversaw 
completion of the IR Thermography Test, and summarized the testing results. 
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The IR Thermography Test detected cracks in window frames on the west side of the building which 
were a source of air infiltration. This was confirmed through the Blower Door Test which indicated an air 
leakage of 18cfm through the large arched windows. Both the IR Thermography as well as the Blower 
Door Test indicated that effective sealing of air gaps at points of penetrations in the exterior walls can 
help reduce energy consumption. Thus, the results of the two tests complement each other and help to 
identify and analyze the faults in the building envelope. These faults, when addressed effectively, can 
contribute to significant reduction in energy consumption of the building.  

 

Figure 14.  Heat loss through cracks in window frames 
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1. Introduction 

HVAC systems in buildings are responsible for 14% of primary energy consumption and 32% of all 
electricity generated in the U.S.  For office buildings, HVAC energy consumption represents about 48% 
of the total primary energy usage (Pérez-Lombard et al., 2008).  Furthermore, energy use in the built 
environment is projected to grow at an average rate of 1.5% annually.  Previous studies have indicated 
that energy consumption in commercial buildings is as much as 30% higher than expected due to the 
presence of faults (Katipamula and Brambley 2005).  Automated fault detection and diagnosis (AFDD) 
can reduce this additional energy consumption, improve comfort conditions, and reduce costs for service.   

The goal of this project is to develop and demonstrate a library of diagnostics decision support tools 
that can enable cost effective diagnostics solutions for existing buildings.  Whole building diagnostic and 
decision support tools should robustly maintain building energy performance at an optimal level 
following commissioning of retrofitted buildings. In Budget Period 2 (BP2), the project teams have 
focused on two select building types: 1) buildings that employ packaged rooftop air conditioners (RTU) 
and 2) buildings that utilize built-up air-handling units (AHU) with variable-air-volume (VAV).  These 
building types were selected to be representative of the 10-county EEB-HUB region.  The specific goals 
for BP2 were:  1) develop, evaluate and implement sub-system diagnostics solutions as both embedded 
and add-on solutions and 2) develop and evaluate whole building decision support tools and systems for 
corrective action prioritization by building decision makers (including facility operators and sub-system 
service providers).  The Purdue team focused on RTU and DX equipment, the Drexel team addressed 
AHU-VAV systems, Bayer studied faults for envelope systems and the UTRC addressed whole building 
decision support tools and systems.  In subsequent years, the library will expanded to include tools that 
cover all of the representative equipment, envelopes, and systems within buildings for the EEB-HUB 
region and whole building demonstrations of the diagnostic implementations will be performed. 

The following sections provide a detailed description of the major accomplishments by the UTRC, 
Purdue, Drexel, and Bayer teams. 

 

2. Fault Prioritization Tool Chain 

2.1 Fault Prioritization Tool Chain for Design Phase 

Introduction 

It has been widely reported that degraded and poorly controlled building systems can use up to 30% 
more energy (Katipamula and Brambley 2005). Building performance simulation (BPS) tools have 
become increasingly important with the growing strive to reduce energy use in building sector. Among 
other diverse applications, BPS tools can play significant role in facilitating energy retrofit analysis, 
supporting retro-commissioning activities and act as design support tool when designing sensor network 
to be used for continuous commissioning.   

At the same time, current state of the art tools do not provide a standard and scalable capability to 
model and simulate faults occurring in buildings. With exception of few (e.g. EnergyPlus fault models, 
Basarkar et al. 2011) BPS tools assume non faulty operation of the building system.  

Objective and Motivation 

The objective of this work is to develop a scalable model based approach for evaluating impact of 
various building faults, and extend it to prioritize building energy failure sources. Due to lack of scalable 
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approach, expert judgment is currently used to guess critical building faults. Although this approach may 
work for handful of faults, it does not provide any quantitative measure of fault impact (e.g. kWh or 
$ wasted), and provides very little economic input for design of FDD system (i.e. does the fault impact 
warrant FDD system investment). Also, expert judgment typically fails to capture and prioritize coupling 
effect when multiple faults occur together. As we will show in this report, coupling effect can be 
significant even though individually faults may be insignificant.  

Thus, a readily deployable and generic fault modeling capability is required if BPS tools are to be 
employed in above mentioned applications. Also, a systematic process is needed to explore both 
individual and coupling fault impact. This was also a motivation behind the work presented in this report. 
Our objective is to develop a generic model based approach that can be used for quantification of various 
faults and fault severities impact on energy consumption and develop a systematic process that uses this 
capability for fault prioritization. In this report, we present a fault modeling library developed in 
TRNSYS and demonstrate its applicability in a systematic process for fault prioritization.  

We note that although the library is demonstrated for fault prioritization at design stage in this report, 
it has applications in other FDD areas as well, such as prognosis and real time fault impact assessment. 

Literature Survey 

Building Faults 

There were a few attempts in the literature to provide lists of most common faults in building systems 
(e.g. ANNEX 25 1996, Lee et al. 1997, ASHRAE 1043-RP, 1999, Siegel, 2002, Li, 2009). The faults 
could be of different types as reported by Haves (1977): abrupt – which happen suddenly, and 
degradation – which develop over time. 

In this report, we have derived an extensive list of different fault types that translate to more than 200 
faults for complete air handling system and pertinent building zones, based on in-house building expert 
brainstorming and Wen and Li (2011). Both abrupt and degradation faults were considered. 

BPS for Fault modeling 

BPS tools have been increasingly used in building design. However, their use in operational phase has 
been restricted due number of limitations, one of which is their inabilities to directly account for 
imperfections in building systems that could possibly lead to misspredictions of performance.  

Few isolated studies were reported in which BPS tools were used for fault simulation. Examples 
include: reverse control and leaky damper faults in HVACSIM+ by Dexter (1995), sensor offset and 
damper and valve mechanical blockage in MATLAB SIMULINK by Glass et al. (1995), cooling coil 
fouling and valve leakage in HVACSIM + by Haves et al. (1996) and economizer operation faults in 
DOE-2 by Katipamula et al. (1999). The faults were simulated perturbing relating parameters to mimic 
faults. Although this approach can lead to accurate prediction of the change in system performance, it 
heavily relies on expert judgments of the modeler and thus is not readily reusable for other buildings and 
available to other modelers. More reusable fault model developments in ENERGYPLUS have been 
reported by Basarkar et al. (2011).  

In addition, the reported studies consider only individual fault effects on degradation of building 
performance. The coupling effect has not been part of above studies. As we show in this report, building 
faults could show significant coupling effect when occurring simultaneously, which could as well cause 
difficulties in designing fault detection and diagnostic algorithms. Hence, a systematic approach to 
explore both individual and coupling faults is required, which is addressed in this report. 
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Methodology 

Fault Model Library 

To simulate different faults, we have developed a generic and scalable fault model library. Currently, 
the fault library is developed in TRNSYS (TRNSYS, v17), and is reusable and expandable to any 
building size. The library development resulted in a new TRNSYS environment. It is an extension of the 
commercially available tool that enables simulation of faults. TRNSYS graphical user interface is 
extended so, the faults can be modeled in TRNSYS Studio. We also developed a fault manager in 
TRNSYS, which is used to manage fault simulation and is also intended to serve as an interface to other 
simulation tools (such as optimization and/or uncertainty quantification tools).  

The following inputs are needed to use the newly developed TRNSYS environment:  

 TRNSYS textual input file (dck file); 
 new TRNSYS environment (new .dlls and proformas in correct folders). 

Although TRNSYS allows for high modeling flexibility, passing information from one component 
model to another without following the working fluid or signal flow is not recommended if consistency of 
fault propagation has to be assured.  

The steps to simulate faults are as follows: 

 import dck file into TRNSYS Studio; 
 create (or Copy from ‘Template’) Fault Manager Component in the new TRNSYS project file; 
 create links between Fault Manager and components in which faults are introduced; 
 inject faults using the fault prioritization process discussed later run fault simulation. 

 

 

Figure 2.1 Various faults modeled in the library 

 

We have identified three generic types of fault models (as illustrated in  

 

Table 2.1): 
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1. Continuous fault/ continuous variable: Fault where the transition from faulty to non-faulty state 
happens in continuous manner and which can take any value from a given continuous range (e.g. 
sensor temperature offset). 

2. Discrete fault/ discrete variable: Fault where the transition from faulty to non-faulty state does not 
happen in continuous manner and which can only take value(s) from a discrete range (e.g. 
changing sign of proportional gain in PID controller). 

3. Discrete fault/ continuous variable: Fault where the transition from faulty to non-faulty state does 
not happen in continuous manner and which can take any value from a given continuous range 
(e.g. actuator being stuck). 

 

Table 2.1 Generic fault model types with illustrative examples 

 

 

In the current implementation of the library, each fault is represented by a single parameter (an 
example is given in Figure 2.2). The same parameter is used to indicate the presence of a fault, as well as 
to provide information about the intensity and characteristics of the fault. For all the parameters 
representing faults, value ‘0’ specifies non faulty condition. Any other value is used to characterize the 
fault. This notion is natural for most of faults of the first type ( 

 

Table 2.1) for which the change from faulty to non faulty condition happens by continuously 
changing a corresponding parameter. However, for the other two types, for which this transition is not, 
faulty condition is limited to values not-equal to ‘0’. 

 

 

Figure 2.2: Integrated fault modeling interface 
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Process for Fault Prioritization 

Figure 2.3 shows the process and the tool chain that we used for fault prioritization. The overall 
process involves use of a building model fault library as discussed in previous section.  The list of faults 
to be evaluated and prioritized is based on those discussed in literature survey section, and any additional 
faults recommended by building energy experts. Next, we introduce all potential building faults one-at-a-
time, and evaluate the building model to estimate building performance (whole building energy 
consumption in this study) under faulty conditions. This allows us to identify and prioritize key individual 
faults that are critical in terms of energy usage. Next, we repeat the process with injection of two faults at 
a time. This helps us identify important couplings between different fault pairs. 

 

 
Figure 2.3 Overall process for fault prioritization 

 

Although not implemented in the current study, the process can be extended to evaluate coupling 
effect of multiple faults (i.e. more than two) as well. In our experience, available computational resource 
plays a key limitation, as the number of couplings grows exponentially. More sophisticated methods such 
as Sobol indices will be implemented in future to quantify higher order effect.  

Fault Prioritization: Performance Measures 

As stated earlier, we use the total impact of a fault on the whole building energy consumption as the 
performance measure to prioritize individual and couple fault effect. It is important to note that for the 
current study, we have limited the analysis to a single performance indicator. Occupant comfort has not 
been considered. Thus, in this study we do not differentiate between faults that could be detected by 
significant change in occupant comfort and those that could go undetected. Appropriate comfort measure 
can be used in the future to perform prioritization. Also, we have assumed equal likelihood for all the 
faults in the current study.  Figure 2.4 illustrates the performance measure defined for individual and 
couple faults. 

Performance measure for individual fault prioritization has been defined as a change in relevant 
building energy consumption when only one fault is introduced and is determined as follows:  

F(A) = E(fault A introduced) – E(Baseline) 

F(B) = E(fault B introduced) – E(Baseline). 
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Performance measure for fault coupling prioritization has been defined as an additional change in 
building energy consumption over the additive change when two faults are introduced, and is determined 
as follows:  

F(AB) = [E(faults A&B introduced) – E(Baseline)] – [F(A) + F(B)] 

 

Figure 2.4: Performance measures defined for individual and coupled faults 

 

The fault prioritization is based on the impact on the above defined performance measures. The fault 
with higher performance measure is ranked higher. Same rationale is applied to coupling effect 
prioritization. Next, we illustrate out methodology with a case study. 

 

Demonstration and Results  

Building Description 

 

   

 

Figure 2.5 Building 101 and TRNSYS model 
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For the demonstration purposes, we selected a mid-sized office building in the Philadelphia Navy 
Yard, called Building 101 (Figure 2.5). Overall building is 61700 ft2, and is equipped with 3 AHUs and 
number of VAV boxes with reheat coils. Each AHU contains an economizer, a heating coil (served by 
boiler), and DX cooling coil. We have developed a TRNSYS model for a part of building 101, as shown 
in Figure 2.5. Our TRNSYS model included one AHU (called AHU3), 8 VAVs, and all 10 zones served 
by the modeled part of the HVAC system.  

As stated earlier, we evaluated the individual fault impact by injecting one fault at a time, followed by 
two faults (coupled faults) at a time evaluation. For simplicity, the time variation in fault intensities has 
not been considered in this study even though the library does not pause such limitation. We simulated 
one week each from summer and winter seasons, and prioritized faults for each seasons. Next, we discuss 
the results from summer prioritization. For the discussion purposes, we only illustrate approximately top 
15-20 faults in each category.  

Fault Prioritization: Summer conditions 

Figure 2.6 shows the results of fault prioritization for summer conditions. For summer conditions, we 
have used the building electric energy consumption as the performance measure. We can see from Figure 
2.6 that 24 hour operation and OA damper stuck are top two faults, resulting in approximately 59% and 
51% increase in electrical energy consumption, respectively. This result matches building experts’ 
judgment/intuition. However, our methodology has helped quantify the magnitude of energy impact of 
each fault, which is building system dependent and thus rarely intuitive. Knowledge of top individual 
faults is very useful to building energy manager, as either they can be eliminated or appropriate diagnostic 
packages can be deployed to monitor them. Also, the magnitude of the energy impact can also be used to 
perform economic assessment of such diagnostic package deployment. 

Figure 2.6 also shows the prioritization of coupling faults, when two faults occur together. We point 
to an interesting result marked by red dotted oval. In summer, not shutting down the heating alone does 
not have significant impact on the performance measure. The same applies to having the heating water 
valve in AHU heating coil being stuck. However, if these two faults happen at the same time, their effect 
is significant. For building 101, their coupled effect can be upwards of 20% increase in energy 
consumption. The heating will work against cooling and increase discharge air temperature from AHU. 
Occupant comfort does not necessary need to be decreased if it could be provided by higher air flow 
through each VAV.  

This result illustrates that the energy impacts estimated by our methodology for two faults occurring 
together are not as intuitive to the expert, as the individual faults. The methodology ensures that all key 
faults and couplings are captured, and nothing is left for intuition. Interestingly, the corrective action to 
suppress a coupling effect only involves fixing one of the faults. The energy manager can incorporate this 
information when prioritizing corrective actions. 
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 Individual Faults 

 Coupling Faults 

Figure 2.6: Summer prioritization based on change in electrical energy (performance 
measure) for individual and coupling faults 

 

Fault Prioritization: Winter conditions 

Figure 2.7 shows the results of fault prioritization for winter conditions, where we use the change in 
boiler energy consumption as the performance measure. We can observe from Figure 2.7 that OA damper 
stuck is the top most fault for Building 101, resulting in approximately 400% energy consumption. Also, 
many other damper faults rank among top ten, e.g. damper obstructed and leaky. 

In comparison to OA damper stuck, inverting the sign of the proportional gain (Kp) in PID control for 
AHU heating coil valve has negative impact on energy consumption. Under this fault, the energy 
consumption reduces by 35% (and therefore not seen in Figure 2.7). In addition, faults such as DAT value 
offset and AHU heating coil valve being leaky, have only 20% increase above the baseline energy 
consumption. However, if any of the latter faults happen together with inverse Kp sign, the coupling 
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impact energy increase to above 100% over the baseline, which is very significant. As such, these 
coupling results are not intuitive as well, and demonstrate the benefit of our methodology. 

 

 Individual Faults 

 Coupling Faults 

Figure 2.7: Winter prioritization based on change in boiler energy (performance measure) for 
individual and coupling faults 

 

Concluding remarks and future work 

We have develop a generic model based approach that can be used for quantification of various faults 
and fault severities impact on energy consumption and develop a systematic process that uses this 
capability for fault prioritization. In this report, we present a fault modeling library developed in 
TRNSYS and demonstrate its applicability in a systematic process for fault prioritization. Fault library 
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extends to BPS capability by enabling modeling and simulation of imperfections in the system in a well 
managed way (via fault manager). The added capability extends to both abrupt and degradation faults.  

By extending this capability for fault prioritization process, we demonstrated that individual, as well 
as couplings are important. Through a mid-sized office building case study, non-intuitive complex 
coupling of faults has been demonstrated. The coupling effect can boost the effect of individual faults 
significantly.  

Including occupant comfort as additional performance indicator to limit the study only to the faults 
that could go undetected and cause significant energy performance degradation. Coupling the impact of 
the fault to the probability of its occurrence to determine the risks. Study the implementation of the 
reduced order model so the higher order couplings can be analyzed.   

2.2.    Fault Impact Assessment Tool Chain for Operation Phase 

Introduction 

This project has developed and demonstrated a library of diagnostics decision support tools that can 
enable cost effective diagnostics solutions for existing buildings. The aim is to develop a suite of smart, 
component-embedded diagnostic tools that can ultimately be integrated to support building energy 
management. Specifically, we have developed a reusable tool chain to prioritize equipment faults based 
on their impact on energy consumption. This tool chain is intended to assist building managers in making 
critical building operation decisions.  The aforementioned tool chain relies on a specific type of data 
driven models (Graphical Network Models) to assess fault energy impact. These data-driven models can 
be learned using limited operational data, while still being accurate enough to obtain energy impacts 
under different fault conditions. As a proof of concept, the data driven graphical models were successfully 
used to estimate energy impacts of faults such as AHU outside air damper stuck and Heating coil valve 
stuck in building-101 simulation environment.   

Methodology 

Backward Fault Injection based Fault Impact Assessment  

The proposed method for fault impact assessment is based on an approach that we refer as Backward 
Fault Injection (BFI). In BFI approach, which is illustrated in, as soon as a fault is detected in an 
operational component, we project the fault in the immediate history to assess its energy impact. This 
backward projection is carried out by injecting the fault using a Graphical Network Model while keeping 
some of the exogenous variables (Outside air Humidity, Temperature etc.) the same as in the recorded 
history. Thereafter, Graphical Network model allows one to estimate the energy consumption under the 
fault condition as shown by the dotted red curve in Figure 2.8. The solid red curve shows the energy 
consumption recorded in fault free state. The excess energy consumption under the fault can be assessed 
to be the area between the two curves. 
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Figure 2.8: Illustration of Backward Fault Injection (BFI) approach for the energy impact assessment 
of the component faults. 

 

Figure 2.9 outlines the entire process energy impact assessment of a fault. Once a fault is detected, the 
approach for quantifying its energy impact consists of three steps 1) Seeding the fault in the immediate 
history on a finite time horizon, (2) estimating the energy consumption under the faulty condition, and 3) 
Using the difference between the estimated energy and the measured nominal energy consumption to 
quantify the energy impact of the fault. The data driven Graphical Network models that form the 
backbone of the proposed method are discussed in greater details in the next section. 

 

 

 

Figure 2.9: Fault impact assessment process used in operation phase 

 

Graphical Models  

Figure 2.10 shows a Graphical Network Model for the Economizer of an AHU. The nodes represent 
the variables that are pertinent to the Economizer and the arrows indicate causality between them. The 
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cause and effect relationship, encoded by the arrow, may have different strengths. The strength of 
influence is captured probabilistically between the parent (causes) nodes and the child (effect) node. Such 
graphical models enable one to estimate the most likely value (and the associated uncertainty) of a certain 
variable of interest given the other variables. For example, to estimate the Mixed Air Temperature (MAT) 
when the Outside Air Damper (OAD) is stuck at certain position, one queries the graphical model by 
supplying values for OAD, OAT, RAT and the schedule (day/night mode) (These inputs are referred as 
evidence in graphical model literature). As the output, we get the expected value of MAT under the 
supplied evidence with uncertainty bounds.   

 

   

 

Figure 2.10 A Graphical model (right) for the Economizer (left) of an Air Handling Unit. The Grey 
and white nodes represents the discrete and continuous variables respectively 

 

Graphical Model Selection 

One way to categorize graphical models is based on the data-type they can handle. Historically, 
discrete graphical models have been developed extensively because the domains in which they were used 
(insurance, fraud detection etc.) had predominantly discrete variables. The applicability of discrete 
models in other domains, which have significantly more continuous variables, is contingent upon the 
discretization of continuous variables. Even though discretization allows one to build a discrete graphical 
model in inherently continuous domains such as HVAC systems, it comes at a price. 

 The resulting model becomes sensitive to the discretization policy employed. If discretization is 
not done right, the impact on the model output can be adverse. 

 Number of parameters that are needed to be learned increases significantly. As a result, the data 
requirements for learning a high fidelity data-driven model increases. 

 The applicability of model becomes questionable outside the range in which the model is learned.  
An ideal scenario, keeping in mind the above mentioned shortcomings, is to develop graphical 

models that can directly work with continuous data. There have been some proposals in this regard 
(Lauritzen (1992)) that aim at learning mixed graphical models with the ability to handle both the discrete 
and continuous variable in a single model. UTRC has also been funding research in the area of Mixed 
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Graphical Models. The models used in this project were developed in a separate ongoing project in the 
UTRC. 

To illustrate the benefit of using mixed graphical models over the discrete counterpart, for modeling 
the HVAC components, we take the example of the Economizer shown in figure 10. Figure 11 shows the 
sensitivity of the two models on the size of data used for learning. The goodness of a model is quantified 
by the Root Mean Squared Error (RMSE) in the estimation of MAT on an out of sample (never seen) 
dataset. The robustness of mixed graphical model to fewer data samples is apparent from figure 11. Even 
under very low data conditions, we obtained mixed graphical models with acceptable accuracy. On the 
contrary, discrete graphical models showed a more pronounced sensitivity to the size of the data used for 
model learning. As availability of adequate ground truth (training data) is always a concern in data driven 
modeling, the mixed graphical model clearly provides a more reliable option for building the graphical 
network models. 

 

  

Figure 2.11 Comparison of the sensitivity of the discrete (red) and mixed (blue) graphical models in 
terms of their prediction accuracy. 

 

Model Training / Commissioning 

In data-driven modeling, the onus of learning a good model is primarily on the availability of a 
reliable representative dataset (training data) generated by the system that needs to be modeled. This is 
also true for the mixed graphical network models that have been used in the proposed fault impact 
assessment method. A good training dataset is not just devoid of measurement errors but also is 
representative of all the conditions that the system is expected to see. Clearly, in systems with multiple 
variables procuring a training dataset that has comprehensively spanned the input space is quite 
challenging. UTRC has developed a methodology that allows one to generate such dataset by employing 
certain functional tests during the commissioning phase of the component. A functional test is defined as 
an experiment in which all the variables that can be explicitly controlled (OAD position, HCV position 
etc.) are spanned in their range while simultaneously recording the other variables. The dataset generated 
by such functional test, contains more information about the underlying system compared to a dataset 
obtained by simply recording the data from a component in regular operation. Figure 12, illustrates the 
concept of functional tests for the heat-exchanger graphical model, where the Heat Coil Valve (HCV) 
position is spanned in its entire range in a systematic manner.  

M
AT 
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Figure 2.12 Illustration of a functional test to generate good quality data for graphical model learning 

 

Fault Propagation with Graphical models 

To improve the scalability of our method, we propose decomposing the HVAC system into smaller 
components. This decomposition allows one to build smaller models that communicate with each other, 
rather than one large model, which may be difficult to learn. For example, an HVAC system can be 
decomposed into Economizer and Heat Exchanger as shown in figure 13. The models of these 
subsystems can be learnt independently. The communication between them is via a set of common 
variables that appear in both the models. The question that arises is how do we assess the impact of a fault 
occurred in an upstream component (Economizer) on some downstream component (Heat Exchanger). 
For example, a damper stuck open in winter can cause excessive heat transfer in heat exchanger. To 
analyze such propagation of faults UTRC team developed capability of fault propagation between 
different subsystems. Figure 2.13 illustrates the idea behind the proposed fault propagation scheme. As  

 

 

Figure 2.13 Fault propagation capability for operation based models data 
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shown in Figure 2.13, a fault in the economizer damper is first used to estimate the MAT. The estimated 
MAT value is propagated to the Heat Exchanger model, where it is used to estimate the power 
consumption and DAT (discharge air temperature) at the heat exchanger under fault condition (OAD 
stuck). 

Demonstration and Results  

We have completed and demonstrated the prototype of the automated process for estimating energy 
impact of any damper and valve faults in air-handling system. Figure 2.14, shows the steps involved in 
the fault impact assessment prototype. The fault impact process involves three sub-processes (1) 
interfacing with middleware – partially completed, (2) automated fault impact model generation, and (3) 
output visualization of fault impact. The current implementation is in MATLAB and we are in the process 
of developing interfaces with middleware. 

 

 

 

Figure 2.14 Fault impact analysis process 

 

Figure 2.15 demonstrates the accuracy of our fault impact assessment method on the building 101 
simulation data. The top of Figure 15 shows Graphical Models for the Economizer (left) and the AHU 
Heat Exchanger (right). To quantify the energy impact for a stuck damper fault (damper stuck at 20% 
opening), we take the following steps. Using the measured values of outside air temp (OAT), outside air 
humidity (OAH), return air temp (RAT) and the fault value (20%) of the outside air damper (OAD), we 
estimate the MAT using the graphical model for Economizer. The MAT value is propagated to the heat 
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exchanger model, where we compute other intermediate variables such as heating coil valve (HCV) 
position, hot water outlet temperature (HW_Tout), discharge air temp (DAT) etc. before computing the 
thermal power under the fault conditions. For the validation purposes, we compared the excess energy 
consumption due to a stuck damper estimated using the proposed method with that obtained from the 
TRNSYS model for building 101. The baseline (no-fault) energy consumption is also included as a 
reference. Clearly, the proposed fault assessment method does a reasonably good job of estimating the 
energy consumption under fault conditions, when compared with the TRNSYS model.  Note that these 
graphical models can be obtained using limited operational data (model training) and don’t require 
detailed physical knowledge about the equipments or buildings. 

 

 

 
Figure 2.15  Comparison of automated fault impact assessment process with the 

TRNSYS model, for fault energy impact analysis. 
 

Concluding Remarks and Future Work 

UTRC completed the development and prototyping of a scalable approach to quantify energy impact 
of faults during operational phase and to prioritize corrective actions. The current prototype can estimate 
energy impact of any damper and valve faults in air-handling system. The automated process invokes 
individual data driven equipment models based on where the fault is detected in air handling system. In 
addition, the process also propagates the effect of fault in the rest of the air-handling system (e.g. effect of 
damper stuck fault in economizer gets propagated to all AHUs and VAVs downstream). We have tested 
the prototype of the automated fault impact process by comparing the results with the TRNSYS model for 
building 101. 
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3. RTU Fault Diagnosis  

3.1.  Introduction   

3.1.1. Background/Need 

According to the U.S Department of Energy (DOE, 2010), space heating, ventilation and air 
conditioning (HVAC) account for 40% of residential primary energy use, and for 30% of primary energy 
use in commercial buildings. A study released by the Energy Information Administration (EIA, 2003) 
indicated that packaged air conditioners are widely used in 46% of all commercial buildings, serving over 
60% of the commercial building floor space in the U.S. This study indicates that the annual cooling 
energy consumption related to the packaged air conditioner is about 160 trillion Btus.  

A study conducted by Messenger (2008) indicates that unitary air conditioners typically do not 
achieve rated efficiency because of improper installation or lack of servicing in the field. This paper 
suggested that service and replacement programs could yield energy savings on the order of 30 to 50%.  
Another investigation (Katipamula, 2005) suggested that faults or non-optimal control could cause the 
malfunction of equipment or performance degradation from 15 to 30% in commercial buildings. 
Therefore, improvements in air conditioner and heat pump maintenance can lead to significant reductions 
in overall energy use and environmental impact. 

 Braun (2003) presents automated FDD systems in HVAC&R applications that have the potential to 
produce operating costs savings by lowering service and energy utility costs, and improve business 
productivity based on the reduction of equipment downtime. In order to be cost effective, automated FDD 
system for HVAC in commercial buildings should have low installation cost and low-cost reliable sensors. 
In order to accomplish this goal, automated FDD systems for HVAC&R applications could be integrated 
into individual equipment controllers to provide on-line monitoring, fault identification, and diagnostic 
outputs with sufficient information to choose an appropriate action. 

3.1.2. Objectives 

The primary goal of this research is to develop and demonstrate a complete automated fault detection 
and diagnostic implementation using virtual sensors for rooftop air conditioners (RTUs) with fixed speed 
compressors and a DX system with variable stage compressor. To achieve this goal: 

1. Various virtual sensors are developed and evaluated 
2. A complete diagnostic system is demonstrated for a RTU system 
3. Performance indices are developed to assess whether RTU service should be performed. 

As a first step, virtual sensors are improved and evaluated based on existing laboratory data and UTRC 
RTU test data. The virtual sensors included in the study are: 

1. Refrigerant charge 
2. Three different approaches for refrigerant mass flow rate 
3. Compressor power 
4. Condenser and evaporator air flow rate 
5. Outdoor-air fraction provided by the economizer. 

After the virtual sensors have been evaluated, impacts of individual faults on capacity and COP are 
evaluated using existing data for a number of different units.  This information is useful in understanding 
the necessary sensitivity of virtual sensors to be used for fault detection and diagnostics.  
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Laboratory testing was performed on a 4-ton RTU using refrigerant R-410A. The tests were 
conducted under different normal and faulty conditions using the psychrometric chambers at Purdue 
University’s Herrick Laboratories.  Virtual sensors are developed and evaluated for the RTU system. 
Each of these virtual sensors is needed as part of an overall fault detection and diagnostics system.  In 
addition, methods for on-line assessment of fault impacts are developed and evaluated.  Finally, the 
developments are integrated into an overall diagnostic system and demonstrated within a laboratory 
setting.  

3.1.3. Literature Review  

3.1.3.1. Earlier FDD approaches for RTU 

Over the past 20 years, various FDD approaches have been developed for RTU systems.  This section 
provides a review of some representative publications.  Based on the review of literature, most papers did 
not address a complete automated FDD system.  

Rossi and Braun (1997) developed a statistical FDD method based on a steady-state model for a RTU 
system with fixed-speed compressor and fixed orifice expansion device (FXO). The FDD system used 
nine temperature and one relative humidity measurements for inputs, and estimated seven representative 
temperature outputs.  Residuals were formed as the difference between the measured output states and 
those predicted by the steady state model.  The calculated residual values were used with a Bayesian 
decision classifier to determine whether the operation was faulty or normal.  Faults were detected when 
the probability of normal performance fell below a threshold.  After a fault was detected, a fault diagnosis 
was performed using a statistical, rule-based classifier.  The fault diagnostic classifier could identify the 
most likely cause of the faulty behavior using a rule-based pattern chart that related each fault to the 
direction of residual change corresponding to each type of the fault.  The fault diagnostic classifier 
module was devised assuming individual features as a series of independent probabilistic occurrences, an 
standard Bayesian classifier assumption.  

Chen and Braun (2001) developed a rule-based FDD method for a rooftop air conditioner with a 
thermal expansive valve (TXV).  The FDD algorithm was a modified version of the approach developed 
by Rossi and Braun (1997) and was able to detect and diagnose seven faults within the system: 

1. Evaporator air flow faults 
2. Condenser air flow faults 
3. Liquid line restrictions 
4. Compressor valve leakage 
5. Refrigerant leaks  
6. Refrigerant overcharge 
7. Non-condensable gas mixed with the refrigerant.  

The approach for fault isolation used temperature residuals between measurements and normal 
operation predictions to compute “sensitivity ratios” that were sensitive to individual faults.  The 
approach required six temperature sensors and one relative humidity sensor.  Sequential rules were 
developed that compared the sensitivity of residuals organized within a fault characteristic chart was used 
for FDD.  The advantage of this method was insensitivity to variations in operating conditions while 
maintaining sensitivity to specific faults. 

Li and Braun (2007a) presented improvements to the original statistical ruled-based FDD algorithm 
for rooftop air conditioning units with fixed-speed compressors and FXOs.  The performance of the 
original method that is based on a diagonal covariance matrix was evaluated and compared to Monte-
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Carlo simulation (MCS) based on a non-diagonal covariance matrix.  The study found that the original 
method was not sufficiently robust, whereas the MCS method was robust but not useful for online 
implementation due to a large computational requirement.  This study also provided an improved 
classifier method that did not require a covariance matrix, but instead uses a normalized distance method.  
The method also takes advantage of statistical methods to minimize the false alarms rate. It was 
determined through experimental results that this FDD method was relatively insensitive to parameters 
over a wide range of operating conditions of the system.  A steady-state detector was also developed 
based on moving-window variance and slope method to filter out transient data and large noise. 

Li and Braun (2007b) developed a decoupling FDD methodology that utilizes features that uniquely 
depend on individual faults and therefore readily handles multiple faults for packaged air conditioning 
equipment.  In order to realize a cost effective method, they also developed a number of virtual sensors 
that provide high value decoupled features using a combination of low cost measurements and models. 
The virtual sensors were developed for the compressor, expansion valve, condenser, evaporator, and 
refrigerant charge. The work described in this research is based on the use of this approach and includes 
the development of additional virtual sensors, improvements to existing sensors, and extensive validation. 

The Outdoor Air/Economizer Diagnostician is a fault detection and diagnostic method for outdoor-air 
ventilation and economizer operation for commercial buildings.  It is actually a module of the Whole-
Building Diagnostician developed by Brambley et. al. (1998).  The tool uses data available from building 
automation systems (BASs) and uses diagnostics based on engineering models of proper and improper 
air-handler performance.  Rules are implemented as a decision tree and data collected from the BAS are 
used to navigate through the decisions sequentially until a diagnosis is reached.  The tool provides 
diagnoses for ventilation faults as well as economizer operation problems.  It was designed to work with 
common types of economizer and ventilation systems, including temperature or enthalpy controlled 
economizers and constant- or variable-volume systems.  Additionally, the method is able to diagnosis 
faults in economizers using high-limit (change-over) or differential control. 

Air handling performance assessment rules (APAR) is a fault detection tool that uses a set of expert 
rules to detect faults in air handling units (Schein 2003).  The expert rules are derived from mass and 
energy balances for different modes of operation determined from control signals.  A steady-state detector 
is used to filter out transient operation.  Subsets of the rules corresponding to the mode of operation are 
evaluated to determine whether a fault is present.  Application of APAR is computationally simple 
enough to be embedded in commercial control systems and relies only on commonly available sensor data 
and control signals.  The fault detection method was originally developed for application to single duct 
variable-volume or constant volume air handling units.  Packaged air conditioners were not specifically 
considered nor were tested.  Nonetheless, many of the rules can be applied to these type systems without 
difficulty since these packaged systems are in themselves AHUs with an integrated cooling system.  The 
rules are related only to temperature control and therefore fault detection was restricted to only 
components and control strategies directly related to temperature control.  Economizer fault diagnosis was 
not designed. 

An integrated method of AHU control and sequencing logic is described by Seem & House that uses 
sensors commonly found in AHUs (2009).  This differs from the other two economizer FDD methods by 
imposing steady-state conditions using the sequencing logic with the controller.  This eliminates the need 
for a steady-state detector and makes the tool slightly simpler.  Model-based fault detection is performed 
by generating residuals values using the data collected from measurements and control signals.  During 
faulty operation, one or more of the residuals is expected to have a value significantly different from 
normal behavior.  This can be used to diagnose faults; however, this was not discussed. 
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3.1.3.2. Impact of refrigerant charge fault 

Refrigerant leaks occur when a seal or joint within the refrigeration system is compromised and 
allows refrigerant to leak into the surrounding environment.  There have been laboratory studies that have 
documented the impact of refrigerant charge on the performance of air conditioning equipment, including 
the research by Rice (1987), Breuker & Braun (1998a,1998b), and Goswami (2002).  Based on research 
of more than 4,000 residential cooling systems in California, only 38% have correct refrigerant charge 
(Downey, 2002) and the data from Blasnik et al. (1996) have indicated that an undercharge of 15% is 
common. 

Recently, Kim and Braun (2012a) found that a refrigerant charge reduction of 25% led to an average 
energy efficiency reduction of about 15% and capacity degradation of about 20%.  These studies showed 
that improper refrigerant charge could significantly decrease energy efficiency and capacity.  Additionally, 
the study found improper charging can lead to operating conditions that decrease equipment lifespan.  
Refrigerant charge leakage can contribute to global warming in the long term since refrigerants enter the 
atmosphere and contribute to the greenhouse effect.  Other long-term impacts are caused by the extra 
carbon dioxide emissions produced by fossil fuel power plants due to lower equipment energy efficiency.  

3.1.3.3. Impact of heat exchanger fouling fault 

Heat exchanger fouling occurs as a result of dust or other debris covering a heat transfer surface. The 
fouling can reduce air flow as a result of increased pressure drop and also increase the thermal resistance 
due to an added insulating layer.  Fouling can have a significant impact on system efficiency for air 
conditioners and heat pumps.  In previous studies, there have been two methods for simulating heat 
exchanger fouling during experiments: 1) reduction of air flow and active surface area by placing an 
obstruction over a portion of the heat exchanger surface and 2) reduction of the fan speed associated with 
the heat exchanger. 

Siegel and Nararoff (2003) evaluated the impact of evaporator fouling for air conditioner systems and 
found that energy efficiency was reduced by 7% with a 20% reduction in heat exchanger area.  Ahn et al. 
(2006) noted that pressure drop of heat exchangers increases by between 10-30% due to the deposition of 
indoor pollutants that are larger than 1μm in size during exposures lasting over 7 years. They collected 30 
evaporator samples from air conditioners from inns, restaurants, and offices in the field.  A reduction of 
heat exchanger area by 45% led to a cooling capacity decrease of 15%. They also found that the fouling 
material became a bacteria cultivator. 

3.1.3.4. Summary of field surveys for RTUs  

Based on a survey and analysis of 215 rooftop units for 75 buildings in California (CEC, 2003), it was 
shown that 46% of the units were not properly charged, which resulted in reductions in capacity and 
energy efficiency. The average energy impact of refrigerant charge problems was found to be about 5%.  

A study by ADM (2009) evaluated 109 units for 75 buildings in California. Table 3.1 provides 
summary data associated with the fault incidence analysis.  This study found that 89 of the 109 units had 
fault conditions and 31 of these had two or more faults.  The study also found that 45% of the units were 
not properly charged and 55% of the systems were operating with insufficient airflow rate.  Table 3.2 
summarizes field data performance addressing the energy impacts of faults. The average EER for the 
units increased from 6.6 before servicing to 7.0 after servicing, an average increase of 6.1%. The survey 
data indicates that faults or non-optimal control can cause the malfunction of equipment or performance 
degradation by 20% for system with one fault and by 50% for system with three different fault conditions.  
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Table 3.1 Summary of fault incidence analysis 

Fault 
Type 

Comp. 
Fault 

Ref. 
rest

Cond. 
fouling 

Evap.
Fouling

Refrigerant charge Airflow Total High Low Non-cond. High Low
Number 4 4 0 2 30 6 12 2 59 109

 

Table 3.2 Summary of fault impact analysis 

Number 
of fault 

Number 
of fault 
units 

Baseline EER
For standard cond.

Rated cooling 
capacity (tons)

Measured cooling 
capacity (tons) 

Total measured 
input (kW)

Average STD Average STD Average STD Average STD
None 20 8.2 2.48 3.4 0.63 2.58 0.88 3.66 1.03
One 58 6.4 2.15 3.8 0.77 2.16 0.69 4.14 1.07
Two 27 5.8 2.38 3.9 0.9 1.93 0.75 4.11 0.93
Three 4 4.3 3.2 4.1 0.63 1.81 1.29 4.74 1.89
Total 109 6.5 2.24 3.7 0.79 2.17 0.79 4.07 1.07

 

3.2. RTU Laboratory and Field Testing for Offline Analysis (UTRC) 

Experimental data are needed for development of robust diagnostics methods as well as for its 
validation and demonstration.  Experimental data were generated by UTRC in a well-controlled 
environment of lab tests and also in more realistic field conditions. The collected data were transferred to 
Purdue University for validation of diagnostic methods. 

3.2.1. Laboratory Testing 

The objectives for lab testing are: 1) reliable data generation for FDD model development and 2) 
validation of developed models.  Advantages of the lab testing include 1) easy control of conditions and 
fault creation and 2) a great amount of high quality data in a short period. 

A 7.5 ton Carrier RTU HC unit was down selected for the testing due to its high popularity in HVAC 
applications. Typical fault detection thresholds are about 10% performance for capacity degradation. The 
degradation may be caused by one or multiple faults at the system level (refrigerant charge, compressor 
power etc), component level (TXV, liquid line, condenser etc) and sensor level (TC drift, etc.). The scope 
of current testing in the lab was only focusing on refrigerant charge caused performance degradations.     

As shown in Figure 3.1a, a 7.5-ton RTU HC unit 48HCDD08 was acquired from Carrier for our 
refrigerant charge diagnostics lab testing. The unit consists of two R410A circulation loops. Each loop 
has an evaporator, a Danfoss compressor, a condenser, a filter dryer and a TXV. As shown in Figure 3.1b, 
the two circuits are independent. However, their evaporators and condensers are stacked together in 
parallel. Indoor and outdoor air is blown through them. Two single speed outdoor fans are adopted for 
outdoor air circulation through L-shape RTPF condensers coils. An indoor air blower is used to provide 
indoor air recirculation.   
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a) Unit Photo                                                 b) Design Configuration 

Figure 3.1 Carrier’s RTU UC Unit and Schematic 

  UTRC’s psychometric lab was modified according to our testing requirements. As shown in Figure 
3.2, a testing chamber (IR-1) is used to simulate indoor conditions. IR-1 has capabilities for temperature 
and humidity control. In addition, it’s equipped with air circulation rate control (Code test device) and air 
sampling device. Another adjacent chamber (OR-2) is used to simulate outdoor conditions. Ducts are built 
to circulate air from IR-1 through RTU unit evaporator and then back to IR-1.    

     

a) Facility Layout                                        b) TCs Distribution 

Figure 3.2 Testing Facility Layout and Instrumentation Configuration 

Figures 3.1 and 3.2 also show the instrumentation including temperatures, pressures, humidities, air 
and refrigerant flow rates measurements. As shown in Figure 3.1, only one refrigerant loop is 
instrumented. Five TC and four pressure sensors are installed along the refrigerant loop. A Micromotion 
flow meter is installed between the filter-dryer and TXV to measure refrigerant flow rate. Air side 
instrumentation is shown in Figure 3.2. Evaporator inlet and outlet air temperatures are measured by nine 
(3x3 matrix) TCs each. Air temperatures at the condenser inlet and outlet are measured by 24 (6x4 matrix) 
TCs each. Nine TCs are attached to condenser coil bends to monitor refrigerant temperatures in the 
condensers. Evaporator air flow rate is measured by a code test device while the condenser air flow rate is 
measured by a dP flow meter attached to the outlet of one of two fans. Both indoor and outdoor humidity 
are calculated through dew point measurement.       

Table 3.3 lists our testing condition matrix. Tests were conducted under 6 refrigerant charge levels, 2 
indoor air flow rates and 2 dry bulb temperatures, 4 outdoor temperatures, one or both circuits. There are 
102 testing runs in total. The detailed conditions and measured parameters are summarized in Appendix 1. 
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Table 3.3 Testing Condition Matrix 

 

The charge fault is our focus.  The charge varies from 70% to 140% of the normal charge amount. 
Testing data accuracy and reliability are evaluated before charge fault diagnostics analysis. Figure 3.3 
shows energy balances between air and refrigerant in evaporator and condenser, and along refrigerant 
loop. Over 90% data are within ±5% difference between air and refrigerant in the evaporator. All testing 
data are within ±5% difference in the condenser. It’s within ±1.5% along the refrigerant loop. The energy 
balance check confirmed the accuracy and reliability of the testing data.  

 

Figure 3.3  Energy Balances between Air and Refrigerants 

Figure 3.4 shows system performance variations caused by refrigerant charge levels under different 
outdoor temperatures (85, 95, 105, 115F) and indoor air flow rates (2250 and 2930 CFM). The indoor 
condition is 80F (DB) and 67F (WB). As shown in Figure 3.4a, the system cooling capacity degrades 
when the refrigerant charge decreases. The lower the outdoor temperature, the more significant the 
degradation. At 85F outdoor temperature, the degradation is over the 10% threshold for both indoor air 
flow rates. The cooling capacity changes insignificantly when the system is overcharged (up to 40%). The 
overcharge amount of refrigerant most likely is accumulated in the condenser. However the compressor 
power is going up because the compressor discharge temperature is going up due to two phase 
condensation heat transfer area reduction in the condenser. This reflects in the system COP. As shown in 
Figure 3.4b, COP has the similar trend as the cooling capacity does when the system is undercharged. 
However, COP decreases when the system is overcharged and more significant at higher outdoor 
temperatures. The system COP degradation is over 10% threshold at 140% charge level for both air flow 
rates and outdoor temperatures at 105 and 115F. In addition, The COP degradation also is over 10% when 
the charge at 70%, 85F ODT and 2930 CFM indoor air flow rate.   
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a) Cooling Capacity Degradation  

 

b) System COP Degradation 

Figure 3.4  Impacts of Refrigerant Charge Levels on System Performance 

Figures 3.5 shows the virtual flow rate sensors accuracy in comparison with the measured data.  Two 
virtual flow sensors are calculated through the compressor map and compressor energy balance. The flow 
rate differences between two virtual sensors are within ±5%. The measured flow rates are also within ±5% 
at over 85% charge level in comparison with the virtual sensors. The deviations are over 5% once two 
phase flow occurs at the condenser outlet under 80% charge level. Overall the virtual flow meters are 
practical approaches for charge fault diagnostics with a reasonable accuracy.  

 

Figure 3.5   Virtual Flow Sensors Accuracy Comparison   
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A total of 102 test runs were done covering 6 charge levels, 4 outdoor air temperatures, 2 indoor air 
temperatures and 2 indoor air flow rates.  Quality of testing data is verified through three energy balances 
between air and refrigerant (±5% ) and along the refrigerant loop (±1.5%). Two charge faults (more than 
10% performance degradation) are found at 70% and 140% charge level. Virtual flow meter, compressor 
power meter and capacity meter have ±3%, ±3% and ±4% accuracy. 

The detailed experimental data containing the values in Table 3.4 was transferred to Purdue 
University for further analysis and validation of fault diagnostics methods. 

Table 3.4  Laboratory Measurements 

 

 

3.2.2. Field Testing  

Quality field-operation data is required to demonstrate and validate performance of fault detection 
and diagnosis (FDD) methods on a building system. However, such data availability is very limited. 
Therefore it was decided to conduct tests on a roof-top unit (RTU) on UTRC campus for the purposes of 
setting up and demonstrating FDD methods. 
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The selected RTU is named AC24F (Carrier unit: 50PG-C12-D-60-S4). It has 2 refrigerant circuits 
with a nominal cooling capacity of 10 tons. The RTU has no heating function, has an interlocked 
modulating outside-air and return-air dampers with a damper position feedback signal, the RTU is located 
in IECC climate zone 5.  Figure 3.6  are photos of the RTU, the exhaust damper is a barometric damper. 

Field testing was performed in cooling season of 2012. Tests were run when weather permitted and 
AC24F was available. Investigated faults included: abnormal charge levels, reduced condenser air flow 
rate, and stuck dampers. 

 

 

 

Figure 3.6 The selected RTU (AC24F) on UTRC campus 

Table 3.5 lists the conditions tested in 2012. Note that the RTU under normal conditions (i.e. fault-
free) was also tested for comparison purposes; and into the 1st circuit in all the tests of 2012. The RTU ran 
in each combination of the conditions for at least 1 hour. Data sampling rate was 1 minute. 

Table 3.5 Tested conditions in 2012 

Refrigerant charge levels 70%, 80%, 90%, 100%, and 120% of normal charge
Condenser air flow rate reduction 0%, 30%, 43%, and 56% of normal flow 

Outside-air damper opening 0%, 25%, 50%, 75%, and 100% 
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In order to acquire complete performance data of AC24F and monitor its operation closely, additional 
sensors were installed. Additional sensors are categorized as: a) temperature and pressure sensors on 
refrigerant circuits; b) dry-bulb temperature, relative humidity, flow rate and differential pressure sensors 
on air side; c) power sensors for compressors and fans. Table 3.6 lists additional sensors installed. Key 
temperature and pressure sensors were calibrated to make sure manufacturer-specified accuracy is 
achieved.  

Table 3.6 Additional sensors 

 

 

An air balancing test was conducted on the unit by a NEBB/TABB certified contractor. The objective 
of the test is to obtain the ground-truth data of the air side. The contractor provided a test report, which 
presents comprehensive information on the air side in terms of flow rate, speed and pressure. Figure 3.7 
illustrates static pressure profile of the RTU when the outside-air damper is at its minimum position (20% 
opening). Table 3.7 lists average of multiple-points air speed measurements across inlet surface of 
evaporators. 

 

Measured parameter Model Spec. Output Qty.
Temperature (refrigeration side)
Tll - Liquid line Omega SA1-TH-44006-80-T                      Thermistor 2
Tdis- Discharge temp. Omega SA1-TH-44006-80-T                      Thermistor 2
Tx - Expansion valve inlet Omega SA1-TH-44006-80-T                      Thermistor 2
Tevap - Evaporator temp. Omega SA1-TH-44006-80-T                      Thermistor 2
Tsuc - suction superheat Omega SA1-TH-44006-80-T                      Thermistor 2
Temperature (air side)
Taoc - Condenser outlet Omega ON-906-44006 Thermistor 2
Taoe - Evaporator outlet Vaisala HMT330 1A0A001BCAF200A41AABAA1 4-20 mA 2
MAT - Mixed air temp. Vaisala HMT330 3E0A001BCAC200A01AABAA1 4-20 mA 1
RAT - Return air temp. Vaisala HMD60Y 4-20 mA 1
RH
OARH - Outdoor RH Vaisala HMD60UO ±2% RH 4-20 mA 1
MARH - Mixed air RH Vaisala HMT330 3E0A001BCAC200A01AABAA1 ±2% RH 4-20 mA 1
RARH - Return air RH Vaisala HMD60Y ±2% RH 4-20 mA 1
SARH - Evaporator outlet RH Vaisala HMT330 1A0A001BCAF200A41AABAA1 ±2% RH 4-20 mA 2
SARH - Supply air RH Vaisala HMD60U ±2% RH 4-20 mA 1
Pressure (refrigerant side)
Condenser pressure Setra 1000psi 4-20 mA 4
Pressure (air side)
ΔPevap - Evaporator Setra 5" W.C. 4-20 mA 1
ΔPcond - Condenser Setra 5" W.C. 4-20 mA 2
Flow Meters
Ebtron air flow Ebtron 4-20 mA 1
Watt Meters
compressors Ohio semitronics GW5-015EG 8 kW, 9.6A, 3ø, 460VAC 4-20 mA 2
2 condenser fans Ohio semitronics GW5-108EG 1 kW, 2 FLA, 1ø, 460VAC 4-20 mA 1
1 evaporator fan Ohio semitronics - GW5-006EG 4 kW, 4.8 FLA, 3ø, 460VAC 4-20 mA 1
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Figure 3.7 Static profile from air balancing report 

 

Table 3.7 Air speed data from air balancing report 

 

In addition to air balancing test, 3 more tests were conducted to find air-side performance that is 
important for FDD.  The first test is to find the effect of damper position on supply air flow. AC24F has a 
fixed-speed centrifugal supply fan, but a change of damper position could change the upstream flow 
resistance, such that supply air flow might be different. Figure 3.8 is a photo of AC24F’s outside-air and 
return-air dampers. During the test outside-air damper position was fixed at 6 openings: 0%, 20%, 40%, 
60%, 80% and 100%, and supply air speed was measured by an Ebtron® flow station. It turned out that 
the air speed was not very sensitive to damper position. So the supply-air volumetric flow rate was 
considered constant. Figure 3.9 is a snapshot of Building Energy Management System showing supply air 
speed vs. outside-air damper position.  
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Figure 3.8 Dampers of AC24F 

 

 

Figure 3.9 Supply-air speed vs. outside-air damper position 

 

The second test was to determine a correlation between outside-air flow rate and outside-air damper 
position. The correlation was used for verification of FDD methods. Since the outside-air path is ductless, 
it is difficult to accurately measure outside-air flow rate directly. The adopted method was to measure 
return air flow instead, so that difference between supply-air and return-air flow rate will be outside-air 
flow rate. A Shortridge AirData multimeter was used to measure air speed across the return-air duct. The 
return-air flow rate was calculated with average speed and return duct cross section area. The supply-air 
flow was from an Ebtron flow station. Figure 3.10 shows measured return-air flow rate vs. outside-air 
damper opening. The supply-air flow rate was assumed to be constant, and the outside-air flow rate in the 
figure was calculated. A sigmoid-type empirical model was built upon the data, which has the following 
format: 
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                                          (3- 1) 

where OA-outside-air, SA-supply-air, OAD-outside-air damper opening, and k’s are coefficients 
identified from a nonlinear regression. The relative error of the model is <3%.   

 

 

Figure 3.10 Air flows vs. outside-air damper opening 

The third test was to evaluate how accurate measurements of mixed-air temperature are. In AC24F 
outside air and return air are mixed before entering air filter. There is one temperature sensor installed on 
the unit to measure mixed-air temperature. It is well known that actual air mixing in a RTU or AHU is far 
from uniform. This test revealed air-mixing condition on AC24F. In order to measure air temperatures at 
different locations across an evaporator inlet, an air sampling tree was built as shown in Figure 3.11.  

      

 

Figure 3.11 A custom-built air sampling tree 
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The tree has 3 branches, each of which has 4 holes. A vacuum sucks air out of 3 branches, and air 
temperature of sucked air through each branch is measured individually. By covering some holes on a 
branch, air temperature of an interested location can be measured. HOBO® data loggers and temperatures 
sensors were employed, which were calibrated before use. Figure 3.12 shows the air sampling tree was 
placed in the upper filter compartment in order to collect data of evaporator inlet air temperature on the 
second circuit. 

 

Figure 3.12 Air sampling tree on AC24F 

Figure 3.13 shows temperature measurements, when all the holes on 3 branches were left open and 
outside-air damper was in different openings. Legends correspond to the branch numbers in Figure 3.6. 
The green curve was measured mixing-air temperature by the installed temperature sensor. It is clear that 
air temperature at inlet of an evaporator is highly non-uniform. Based on this test, it was decided to use a 
calculated mixing-air temperature based on enthalpy and mass balance, rather than the measured one, in 
analysis and FDD method verification. 
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(b) at inlet of the second-circuit evaporator 

Figure 3.13 Mixing-air temperature 

 

Three typical faults were injected into AC24F: abnormal refrigerant charge, condenser air flow 
reduction and stuck outside-air damper. 

The normal charge (R410a) of each circuit on AC24F is 13.7 lbs. Charge was added or removed from 
a circuit to simulate undercharge and overcharge. Refrigerant in AC24F was first reclaimed, and circuits 
were vacuumed first; then each circuit was charged to its normal level; when needed, charge amount was 
adjusted accurately using a refrigerant scale. Figure 3.14 shows refrigerant charge operations on AC24F.  

 

                 

Figure 3.14 Charge adjustment 
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Condenser air flow was reduced by covering condenser inlet surface with multiple layers of 
plastic mesh to increase flow resistance. A trial-and-error process was taken to figure out the type and 
layers of mesh to reduce air flow by certain percentage. Air speed at 12 spots across a condenser inlet 
surface was measured with a Shortridge AirData multimeter, and an average speed was calculated for air 
reduction. Figure 3.15 shows air speed measurement at inlet of the first-circuit condenser. 

 

Figure 3.15 Measurements of speed of air entering the first-circuit condenser  

AC24F has an outside-air damper interlocked with a return-air damper, i.e. position of outside-air 
damper is always complementary with that of return-air damper. The RTU comes with a sensor 
measuring position of outside-air damper, and the measurement is available in the Building Energy 
Management system. A stuck damper was introduced by fixing its position during a test. 

Faults listed in Table 3.1 were introduced in the following order: firstly, refrigerant charge was 
adjusted to a specified level; secondly, condenser air inlet surface was covered by layers of mesh to 
reduced air flow to a required level; thirdly, outside-air damper was held at a specified opening. The RTU 
was run in mechanical cooling for each combination of the three faults for at least one hour. 

The experimental data with variable charge, condenser flow and damper position were generated for 
the state-of-the-art RTU in field conditions. Table 3.8 contains operating ranges for the conducted tests 
for 70%, 80%, 90%, 85%, 100% and 120% charge level; Condensed flow restriction for 0%, 30%, 43%, 
56% and damper position 0, 25%, 50%, 75%, 100%. All the tests have been done except the case of 
charge=120% and condenser air reduction = 56%, because of cold ambient conditions in October of 2012.  
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Table 3.8 operating ranges 

 

The difference between RTU air side and refrigerant side energy balance was analyzed to valuate 
accuracy of the test data. The plot below is for Test 15 (100% charge, 56% condenser flow reduction). 
The discrepancy between air side and refrigerant side energy is less than 20% except for the transition 
period during the change of damper position – Figure 3.16. 

 

Figure 3.16 Comparison of air side and refrigerant side energy 

The average condenser air side thermal capacity for each test is calculated for each test. The thermal 
capacity decreases proportional to condenser air flow reduction – Figure 3.17. 

Test # Start Time Charge Condenser flow Damper Position
1 June 70% 0% 0, 25%, 50%, 75%, 100%
2 June 70% 0% 0, 25%, 50%, 75%, 100%
3 July 70% 30% 0, 25%, 50%, 75%, 100%
4 July 70% 30% 0, 25%, 50%, 75%, 100%
5 July 70% 43% 0, 25%, 50%, 75%, 100%
6 July 70% 56% 0, 25%, 50%, 75%, 100%

7-10 July 80% 0%, 30%, 43%, 56% 0, 25%, 50%, 75%, 100%
11-14 August 90% 0%, 30%, 43%, 56% 0, 25%, 50%, 75%, 100%
15-18 September 100% 0%, 30%, 43%, 56% 0, 25%, 50%, 75%, 100%
19-22 October 120% 0%, 30%, 43%, 56% 0, 25%, 50%, 75%, 100%
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Figure 3.17 Air side thermal capacity vs. condenser flow reduction 

All the sensors are connected to the Building Energy Management system. The sampling rate was set 
to one minute for all the tests. Data was collected and saved on a data server.  

 

Charge level: □ 70%; ◇ 80%; ☆ 90%; ○ 100%; ◄ 120% 

Figure 3.18 Subset of data from tests of cooling season of 2012 
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Figure 3.18 shows a subset of data from tests of cooling season of 2012. Each dot in the plot 
represents COP of the first circuit vs. outside-air dry-bulb temperature (OAT). In calculation of COP, 
electrical power includes compressor power of the circuit, 50% of indoor fan, and 50% of outdoor fans’ 
power. Color of dot represents wet-bulb air temperature at inlet of evaporator. Shape of dot denotes 
refrigerant charge level. It is clear in the figure that COP at 70% charge is lower than that of other levels 
except a few outliers. Actually average degradation of 70% charge from 100% charge is 10.8%. 

 

Charge level: □ 70%; ◇ 80%; ☆ 90%; ○ 100%; ◄ 120% 

Figure 3.19 Cooling capacity of the same set of data  

Figure 3.19 shows cooling capacity of the same set of data. The same trend is shown in the plot, 
which reveals 70% charge is a turning point of the RTU performance. In terms of cooling capacity, 
average degradation of 70% charge from 100% charge is 8.7%.  

The detailed experimental data containing the values form Table 3.9 was transferred to Purdue 
University for further analysis and validation of fault diagnostics methods. 
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Table 3.9 Data set  

 

 

3.3.  RTU FDD Assessments using Offline Data  

3.3.1. Impact of Faults on Performance and Costs Using Offline Data 

This section provides details of the impact of individual faults on cooling and heating capacity and 
energy efficiency for a number of air-conditioning systems tested in the laboratory under a wide range of 
operating conditions.  Improper operation can cause significant reduction in both cooling and heating 
capacity.  This capacity degradation impacts runtime of the equipment and can lead to shorter equipment 

Field Measurements

Label Meaning Unit

Fault  Faults Type 

T_RA Return Air Dry Bulb [°F]

T_SA Dry‐bulb temperature of air leaving circuit‐A evapora [°F]

T_amb Ambient Drybulb [°F]

RH_RA Return‐air relative humidity [%]

RH_SA Relative humidity of air leaving circuit‐A evaporator [%]

RH_amb Ambient relative humidity [%]

P_suc Suction Pressure [psig]

T_suc Suction Temperature [°F]

P_dis Discharge pressure [psig]

T_dis Discharge temperature [°F]

P_cond Condenser exit pressure [psig]

T_cond Condenser exit temperature [°F]

P_LL Liquid Line pressure [psig]

T_LL Liquid Line Temperature [°F]

T_evap Evaporator inlet Temperature [°F]

Power_comp Compressor power of circuit A [W]

Power_Id Indoor fan power (fan shared by 2 circuits) [W]

Power_od Outdoor fan power (fans shared by 2 circuits) [W]

Chrg% Charge as %nominal [%]

V_i Indoor total airflow rate (split betweeb 2 circuits) [CFM]

V_o_% Outdoor coil air flow reduction in circuit A [%]

OAD Outside‐air damper opening [%]

T_air_ce Condenser exit air temperature [°F]

dp_evap Evaporatorair‐side pressure drop [in of water]

Tzone Zone temprature  [°F]

T_exvi EXV inlet temperature of circuit A [°F]
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life.  It can also lead to loss of comfort if the capacity degradation is significant enough.  Reductions in 
energy efficiency due to improper operation lead to greater overall electrical energy usage and operating 
costs.  Information about the reduction in capacity and efficiency could be used within an on-line tool to 
assess the economics associated with servicing a unit. 

Impact of refrigerant charge on performance and cost 

To evaluate the impacts of faults on performance, the equipment capacity was determined.  A 
capacity ratio was defined as the ratio of the capacity at the indicated fault level to the capacity at the 
rated condition under nominal operation.  To provide a partial evaluation of the economic impact of faults 
in cooling equipment, annual cost of electricity was estimated for some case studies based on the tested 
units.  The annual cost is the cost per year of operating the system.  Costs were estimated using SEER, 
nominal capacity, estimated runtime, and average electric utility rates. The annual cost ratio is defined as 
the ratio of the annual energy costs at the indicated charge to the annual cost at the nominal charge. 

Existing laboratory data from Kim and Braun (2012a) for several air conditioner systems (A1, A2, A3, 
and A4) and a heat pump system (A5) were used to evaluate the impact of refrigerant charge.  Table 3.10 
shows specification data for each system.  The test conditions for cooling and heating mode are given in 
Table 3.11. 

Table 3.10 System Specifications 

System Capacity [ tons ] Compressor Refrigerant Expansion 
device Accumulator 

A1 3 

Fixed- 
speed 

Scroll

R22 

EEV Yes
A2 3 Reciprocating FXO Yes / No
A3 3 Reciprocating FXO Yes / No
A4 3 Rotary-Tandem FXO Yes
A5 3 Scroll R410A TXV Yes

 

Table 3.11 Test Conditions 

 Mode Refrigerant Charge Indoor temperature Outdoor 
temperature 

Indoor Air flow 
rate

Nominal (%) Dry (°C ) Wet (°C ) Dry (°C ) (%)
A1 

Cooling 

80 ~ 100 

27 19 35 100 

A2 60 ~ 110 
75 ~ 100 

A3 60 ~ 100 
75 ~ 100 

A4 60 ~ 100 

A5 Cooling 40 ~ 130 Heating 20 - 7
 

The system A1 used an electronic expansion valve (EEV) as the expansion device and was tested 
with refrigerant charge levels between approximately 80-100%.  The systems A2 and A3 had two 
configurations; with and without accumulators.  Systems A2 and A3 were tested with refrigerant charge 
levels between 75-100% without an accumulator and between 60-100% with an accumulator.  The system 
A4 included two tandem type compressors and was tested with refrigerant charge levels that ranged from 
70 to 120% under rated test conditions.  The heat pump A5 used a thermal expansion valve (TXV) as the 
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expansion device was tested with refrigerant charge levels between 40 to 130% of normal charge for 
cooling and heating mode. 

Figure 3.20 shows the effects of refrigerant charge on cooling capacity for systems A1-A5.  The 
capacity of system A1, was reduced by 5% with a 25% decrease of the refrigerant charge.  The mass flow 
rate control provided by an EEV allows the system to compensate for variations in charge level while 
maintaining a specified superheat condition at the evaporator outlet. 

Systems A2 and A3 have two cases: with and without an accumulator.  A charge level reduction of 20% 
reduced cooling capacity by approximately 20% for both cases.  The capacity decrease was more 
significant than for system A1 because a FXO was used as an expansion device.  There was also a 
reduction in refrigerant mass flow rate with reduction in charge.  When the refrigerant charge exceeded 
100%, the capacity started to decrease for the system without an accumulator.  This was caused by the 
decrease in condensing efficiency that resulted from the surplus refrigerant that accumulated in the 
condenser.   

System A4 showed a rapid reduction in both cooling capacity when the charge level was decreased 
below 70% of the normal charge level.  The step change that occurred at 90% was caused by the staging 
of the compressors.  Only one compressor was operated instead of two compressors between 90 and 100% 
of refrigerant charge level.  For system A5, the capacity significantly decreased when the refrigerant was 
charged less than 70%.  Although the system uses a TXV to control superheat, it becomes fully open at 
low charge levels and acts like a FXO.  Based on these results, it can be concluded that refrigerant charge 
levels below about 80 % of nominal charge can cause significant reductions in capacity.  

 

Figure 3.20  Capacity ratio for existing test data based on the refrigerant charge 

The efficiency of air conditioners is rated using SEER which is defined by the Air Conditioning, 
Heating, and Refrigeration Institute in its standard ARI 210. Figure 3.21 shows the annual cost ratio of 
electricity that was calculated using laboratory test data.  Low refrigerant charge can cause significantly 
higher operating costs.  
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In the case of system A2 without an accumulator, a 35% decrease of the refrigerant charge increased 
annual energy cost by about 30% ($105 per ton of rated capacity).  Using system A3 with an accumulator, 
the electricity consumption was increased by 20% when a 33% reduction of the nominal charge is used.  
For typical electricity rates of 0.12$/kWh, this increase in electricity would result in an annual energy cost 
penalty of about 15% ($52 per ton) for this unit.  In case of system A4 with the tandem compressor, 65% 
of normal refrigerant charge led to an increase in the annual operating cost by about $140/ton.  For the 
system A5 with TXV as expansion device, a reduction of charge level by 60% increased an estimated 
annual cost penalty of $232/ton.  

 

Figure 3.21 Annual cost ratios for all test data as a function of refrigerant charge 

 

Impact of heat exchanger fouling on performance and cost 

Heat exchanger fouling can have two effects on performance: 1) thermal resistance of the heat 
exchanger increases due to deposits collecting on the surfaces because the conductivity of the deposit is 
lower than that of the metal of the heat exchanger, 2) air flow rate is reduced due to higher pressure drop 
resulting from the deposits.  The reduction of air flow rate can significantly impact the performance of the 
air conditioner system.  Previous work (Li et.al, 2007) has demonstrated that the effect of reduced air flow 
is more significant than that associated with increased thermal resistance.   

Laboratory test data were used to evaluate the impact of heat exchanger fouling on air-conditioner 
performance.  Table 3.12 provides system specifications for the systems studied, including three RTUs 
and three residential split air-conditioners.  R-410A and R-407C were used as refrigerants with both FXO 
and TXV as expansion devices in the systems. 
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Table 3.12 System Specifications 

 System Capacity [ tons ] Compressor Refrigerant Expansion device Assembly type
B1 RTU1 5 Scroll R410A TXV Rooftop
B2 RTU2 5 Scroll R407C FXO Rooftop
B3 RTU3 3 Scroll R410A FXO Rooftop
B4 Split1 2.5 Reciprocating R410A TXV Split
B5 Split2 3 Reciprocating R410A FXO Split
B6 Split3 3 Reciprocating R410A TXV Split

 

The test conditions used to assess heat exchanger fouling impact are listed in Table 3.13.  Rated 
ambient and indoor conditions were maintained.  Condenser fouling was simulated by reducing the 
condenser air flow rate in the all systems except B4.  Fouling was simulated by blocking a portion of the 
condenser area in system B4.  The condenser air flow rates for systems B1-B3 and B5-B6 were varied 
between 30-100% of the nominal air flow rate.  The blocked heat exchanger area for system B4 ranged 
from 0-50%.  To simulate evaporator fouling, the supply fan speed was reduced.  Evaporator air flow 
rates were considered from 5% to 115% of nominal. 

 

Table 3.13 Test Conditions 

 System 
Indoor  

temperature Outdoor temperature Evaporator air  
flow rate 

Condenser air 
flow rate

Dry (°C ) Wet (°C ) Dry (°C ) Wet (°C ) [%] [%]
B1 RTU1 

27 
 

19 
 

35 
 

24 
 

5 ~ 115 -
B2 RTU2 35 ~ 115 55 ~ 105
B3 RTU3 40 ~ 100 70 ~ 100

B4 Split1 70 ~ 100 50 ~ 100 
(Blocking)

B5 Split2 55 ~ 115 30 ~ 100
B6 Split3 40 ~ 100 30 ~ 100

 

Figure 3.22 shows the impact of evaporator fouling on refrigeration capacity.  Fouling was simulated 
using reduction of air flow rate that would occur due to increase pressure drop without the effect of an 
increase of thermal resistance due to deposits.  On average, the capacity was reduced by 10% when a 40% 
reduction of evaporator air flow rate was provided.  Capacity impacts are relatively small over this range.  
However, the impact of evaporator fouling on capacity increases dramatically below about 40% of normal 
air flow rate.  The reduction of evaporator air flow rate by 50% decreased capacity by 17%.  The results 
show that a 20% increase of evaporator air flow has an insignificant effect on capacity. 
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Figure 3.22 Capacity ratio for RTU and split air conditioners based on indoor air flow rate 

 

The impact of condenser fouling on capacity is shown in Figure 3.23.  On average, a 50 % reduction 
of condenser air flow rate decreases the cooling capacity by 9 %.    Covering 50% of the heat exchanger 
area reduced cooling capacity by 22% in system B4.  The condenser fouling simulated by 70% reduction 
of the air flow has about the same impact on capacity as 50% area blocking. 

 

Figure 3.23 Capacity ratio for RTU and split air conditioners based on outdoor air flow rate 

Figure 3.24 shows results for economic impact of evaporator fouling that were determined using 
laboratory test data.   A 40% reduction of evaporator air flow rate led to an annual energy cost increase of 
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about 12%.  The annual operating cost would increase by about $25 per ton, on average, at 40% of the 
normal evaporator air flow rate.  

 

Figure 3.24 Cost ratio for RTU and Split air conditioner based on indoor air flow rate  

Figure 3.25 shows impact of condenser fouling on energy costs.  The results imply that extreme 
condenser fouling can cause significant increases in the operating costs.  Electricity consumption was 
increased by 40% when a 40% reduction of the condenser air flow rate was imposed.  In the case of heat 
exchanger blocking, a 35% decrease of area caused an increase in the annual operating cost by about 
$70/ton. 

 

Figure 3.25 Cost ratio for RTU and Split air conditioner based on outdoor air flow rate 
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3.3.2. Development and Assessment of Virtual Sensors Based on Existing Laboratory Data  

Virtual Refrigerant Charge (VRC) sensor 

Li and Braun (2009) developed a VRC sensor model 1 used to correlate the refrigerant charge level to 
superheat and subcooling.  Deviations from nominal charge can be obtained by using four measurements 
and four parameters, shown in equation                            (3- 2), 

      ratedshshscshratedscsc
chratedtotal

ratedtotaltotal TTKTT
Km

mm
,/,

,

, 1



                            (3- 2)    

where mtotal is the actual total charge, mrated is the nominal total refrigerant charge, Ksh/sc and Kch are two 
constant parameters of a given system, and Tsc,rated and Tsh,rated are liquid line subcooling and suction line 
superheat at rated conditions with the nominal charge, respectively.  The sensor was designed to minimize 
influence of other faults and operating conditions on its output. 

As presented by Li and Braun (2009a), Ksh/sc and Kch can be estimated using the following equations 
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where Xhs,rated is the ratio of high-side charge to the total refrigerant charge at the rated condition and αo is 
the ratio of refrigerant charge necessary to have saturated liquid at the exit of the condenser to the rated 
refrigerant charge. 

Based on data available from Harms (2002), a reasonable estimate value for Xhs,rated was found to be 
0.73 and a value of 0.75 was determined for αo as default parameters. A reasonable estimate for Ksh/sc for 
systems using a TXV or FXO as the expansion device is 1/2.5 based on previous test results from Li and 
Braun (2009).   

Alternatively, Ksc/sh and Kch for the VRC sensor can be tuned to improve accuracy if data are available 
over a range of refrigerant charge levels and operating conditions.  It is necessary to have variations in 
charge level to adequately determine parameters, but the data could also include variations in outdoor air 
flow rate, indoor air flow rate, ambient temperature, and indoor dry-bulb temperature. The parameter 
tuning method minimizes the errors between predicted and known refrigerant charge using linear 
regression.   

Under extreme conditions such as low indoor air flow rate and low ambient temperature, the 
laboratory test results had zero subcooling and superheat.  In these cases, the model 1 approach, which 
uses subcooling and superheat measurements as inputs, cannot accurately predict the charge level.  
Therefore, two other approaches (model 2 and 3) were developed to provide improved performance in 
these situations. Only model 2 results are presented in this report.  Model 3 is a modification of the model 
equation                            (3- 2) that includes a correlation for refrigerant charge in terms of discharge 
superheat of the compressor and inlet quality of evaporator, shown in equation         (3- 5) . 

         1total total ,rated

sc sc,rated sc/ sh sh sh,rated sc/ x evap,in evap,in,rated sc/ dsh dsh dsh,rated
total ,rated ch

m m
T T K T T K x x K T T

m K


                  (3- 5) 
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where Ksc/dsh and Kx are a constant characteristics of a given system, and Tdsh,rated is discharge superheat of 
the compressor and xevap,in,rated is evaporator inlet quality at rated conditions with the nominal charge.  

To analyze the VRC sensor with models 1 and 3, existing laboratory data were used from Kim and 
Braun (2012b).  The data were obtained for two systems from a manufacturer and laboratory testing data 
for two more systems. The specifications for the four systems are shown in Table 3.14.  Table 3.15 shows 
the range of refrigerant charge and other conditions considered for each unit.   

Table 3.14 System descriptions for air conditioner 

System Capacity 
(kW) Refrigerant Compressor Accumulator Expansion 

device Type 

C-1 14.5 R-22 Tandem Yes EEV 

Air Split 
 

C-2 15.2 R-22 Rotary Yes FXO No
C-3 10.5 R-22 Scroll Yes TXV C-4 10.5 R-410A Scroll Yes

 

Table 3.15 Test conditions for air conditioners 

System 
Indoor Temp. Outdoor Temp. Indoor Air Flow rate Refrigerant Charge Level Dry Wet Dry
(F) (F) (F) [%] (%) 

C-1 

80 67 
95 100 

80 ~ 100

C-2 60 ~ 110
65 ~ 100

C-3 67/ 95 / 105 50 / 100 70 ~ 130
C-4 43 / 95 / 115 100 40 ~ 130

 

Figure 3.26 presents performance of the VRC sensor model 1 based on default parameters. The 
overall RMS error of VRC sensor model 1 was about 12%.  As the refrigerant charge level decreased, 
there were bigger differences between predicted and actual charge amounts.  The errors were also large at 
low ambient temperature.  For example, the VRC sensor predicted 60% of nominal charge when the 
system was charged at 40% of nominal charge; a 20% deviation.  
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Figure 3.26 Performance of VRC sensor model 1 based on default parameters 

When the model 1 using tuned parameters were applied, the VRC sensor showed better performance, 
as shown in Figure 3.27.  The performance of model 1 is very good over a wide range of refrigerant 
charge levels and operating conditions.  However, for extreme test conditions such as low outdoor 
temperatures, the VRC sensor model I with tuned parameters needed to be improved to predict all charge 
amounts within 10%.  

 

Figure 3.27 Performance of VRC sensor model 1 based on tuned parameters 

 

Figure 3.28 shows performance of VRC sensor model 3 based on tuned parameters. The model 3 
showed better performance than when model 1 with the tuned parameters was applied at low charge 
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levels. Overall, both the model 1 and 3 with tuned parameters showed good performance in terms of 
predicting charge levels for systems.  However, when test conditions are at low outdoor temperature with 
low refrigerant charge, the VRC model 3 can lead to improvements in cases where the model 1 
parameters do not work well. 

 

Figure 3.28 Performance of VRC sensor model 3 based on tuned parameters 

 

3.3.2.2. Virtual Compressor Power (VCP) sensor 

Laboratory test data (Payne, 2008) was used to develop and evaluate a virtual compressor power 
(VCP) sensor, virtual refrigerant mass flow rate (VRMF), and virtual air flow (VAF) sensors.  
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Table 3.16 gives specifications for equipment where data were obtained through laboratory testing. 
The systems used a TXV as an expansion device and R-410A as a refrigerant. Table 3.17 presents the 
range of operating test conditions with variations in both indoor and ambient temperature.  The system 
was tested with different condenser and evaporator airflow rates, which could represent faults associated 
with a dirty air filter or coil fouling.  Different refrigerant charge levels to simulate improper charge 
service and refrigerant leakage were also tested.  Simulated compressor valve leakage faults, where a 
portion of the discharge flow from the compressor was bypassed to the compressor suction, were tested.  
Thus, this data set could be used to represent faulty compressor behavior.  The system also included fault 
testing for a liquid line restriction (additional pressure drop increase through liquid line) and the presence 
of non-condensable gas (injection of nitrogen gas into the system).  In general, only normal operating (i.e., 
no-fault) data were used to learn parameters of the VCP, VRMF, and VAF sensors.  However all of the 
data were used for assessing the performance.  
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Table 3.16 System descriptions for system A-5 

System Size (kW) Refrigerant Expansion Device Accumulator System Type 
C-5  (Payne, 2008) 8.8 R-410A TXV Yes Air Split Type

 

Table 3.17 Test conditions for laboratory test data for system A-5 

Syste
m 

Indoor 
Temperature 

Ambient 
temperatur

e 

Percentage of 
refrigerant mass flow 

rate

Indoor 
airflow 

rate

Outdoor 
coil block 

Refrigeran
t 

chargeDry Wet 
( C ) ( C) ( C ) [ % ] [ % ] [%] [ % ] 

C-5 27/21 19/15/Dr
y 28/ 35/ 39 60~100 70~100 0 ~ 50 70~130 

 

The map-based method uses curves to fit the compressor motor power input to match the published 
performance data.  Compressor map models are developed under the normal operating conditions of 
compressor.  According to ANSI/ARI Standard 540-1999, a compressor power map can be represented as 
a 10-coefficient polynomial equation in the form of  

3
10

2
9

2
8

3
76

2
5

2
4321 cceceececece TcTTcTTcTcTTcTcTcTcTccW          (3- 6)   

where ci are empirical coefficients, Te is evaporating saturation temperature, Tc is condensing temperature.  

 

Figure 3.29 Performance of VCP sensors for system C-5 under no fault and multi fault condition 

 

Figure 3.29 shows the VCP sensor for system C-5 can predict the performance within 5%.  The terms 
“Normal”, “Comp Fault”, “Cond Fault”, “Evap Fault”, “Liquid Fault”, “Charge Fault”, and “NonCond 
Fault” stand for no fault, compressor leakage fault, condenser fouling fault, evaporator fouling fault, 
liquid-line restriction fault, refrigerant leakage fault, and non-condensable gas fault, respectively. 
Although the compressor map model was developed based on a specified amount of superheat, the VCP 
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sensor predicts compressor power consumption with reasonable accuracy under multi-fault conditions. 
This indicates the VCP sensor is independent of the various faulty conditions tested.  

3.3.2.3. Virtual refrigerant mass flow rate (VRMF) sensor I based on 
compressor map 

Refrigerant mass flow rate is an important measurement for monitoring equipment performance and 
enabling fault detection and diagnostics.  However, a traditional mass flow meter is expensive to purchase 
and install.  Three different VRMF sensors were developed and evaluated in this study that use 
mathematical models to estimate flow rate using low cost measurements.  The three approaches use: 1) 
compressor map for refrigerant mass flow rate that uses inlet pressure and temperature and outlet pressure 
as inputs, 2) energy-balance method that employs the VCP sensor, 3) semi-empirical correlations for 
thermostatic expansion valves (TXV) that are based on an orifice equation          (3- 7). 

A compressor map is used to estimate refrigerant mass flow rate using input measurements of inlet 
and outlet pressure.  Based on ARI Standard 540, the VRMF Sensor I was determined using equation. 

 ecceeecceeccsucmap TTaTTaTaTaTTaTaTaTaTaam  2
9

2
8

3
7

3
65

2
4

2
3210          (3- 7)     

where mmap is the estimated refrigerant mass flow rate, the a’s are empirical coefficients, Te is evaporating 
saturation temperature, Tc is condensing saturation temperature, and  ρsuc is the density at the suction (inlet) 
of the compressor.  

Figure 3.30 shows the performance of VRMF sensor I for system C-5 under no fault and various 
faulty conditions.  The root mean square (RMS) error is generally less than 2% for normal operation and 
with a variety of faults except for compressor valve leakage.  RMS errors were shown for each fault type 
in Figure 3.30.  For the range of compressor leakage conditions considered, the RMS error for the VRMF 
sensor I was 19%. In general, the error increases with the severity of the compressor leakage fault. As a 
result, differences between refrigerant flows determined using VRMF sensor I and other VRMF sensors 
can be used to diagnose a fault associated with the compressor not delivering the proper refrigerant flow.  

 

Figure 3.30 Performance of VRMF 1 based on compressor map 
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3.3.2.4. Virtual refrigerant mass flow rate (VRMF) sensor II based on energy 
balance 

In order to diagnose compressor flow problems, it is necessary to have an alternative VRMF sensor. 
One alternative approach is VRMF sensor II developed based on a compressor energy balance using 
compressor power and compressor heat loss as shown in equation                                                   (3- 8. 
Compared to the map-based method, the energy balance model is much simpler and can be used for both 
fixed-speed and variable-speed compressors. To provide more accurate mass flow rates predictions under 
various faulty conditions, an empirical model for αloss was developed in equation                          
(3- 9. The model was trained using regression applied to normal test data. 

                    
 
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                                                   (3- 8)
                          

sucdissucdispredloss TcTcPcPcc 43210,                                             (3- 9) 

The parameter αloss is compressor heat loss ratio, W is compressor power consumption,  and 
hdis(Tdis,Pdis) and hsuc(Tsuc,Psuc) are the discharge line and suction line refrigerant enthalpy. The compressor 
power consumption, discharge pressure (Pdis) and suction pressure (Psuc) can be estimated using other 
virtual sensors. The c’s are empirical coefficients, Tdis is compressor discharge temperature, and Tsuc is 
suction temperature. 

Figure 3.31 shows the performance of VRMF sensor II for system C-5. The mass flow rate prediction 
was determined using heat loss estimates and predictions from the VCP sensor. The heat loss model was 
determined using data for normal operation where the heat loss was determined from an energy balance 
on the compressor with the flow measured. The RMS error for the VRMF sensor was less than 3% for all 
of the data, including both normal and faulty conditions. The VRMF sensor II is relatively independent of 
compressor faults compared to the VRMF sensor I.  

 

Figure 3.31  Performance of VRMF sensor II based on an energy balance 
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3.3.2.5. Virtual refrigerant mass flow rate (VRMF) sensor III based on TXV 
model 

Expansion devices are used to reduce the pressure of the refrigerant and to regulate the refrigerant 
mass flow rate in response to changing loads.  The TXV adopts a mechanical control method to obtain 
relatively constant superheat at the evaporator outlet.  The valve opening for a TXV is determined by a 
force balance on a diaphragm, as depicted in Figure 3. 32.  The bulb and suction line pressure act on 
opposite sides of the diaphragm and coupled with the spring force, control the effective orifice area.  

 

Figure 3. 32 Diagram of TXV 

 

The VRMF sensor III for TXV was developed based on a semi-empirical model using the difference 
between suction and evaporating pressure as shown in equation                    (3- 10. 
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   
                                             (3- 11)

 
The C’s are empirical coefficients, (Pc-Pe) is the difference between the valve inlet pressure and the 

evaporating pressure, ρf is the density of the refrigerant at the valve inlet, SC is the subcooling of the 
refrigerant at the valve inlet, Tcri and Pcri are the critical temperature and pressure. (Pb-Psuc)  is the pressure 
difference between bulb and suction line, and Adiaph is the area of diaphragm. Fsp,cl, Adiaph and ksp are 
constants based on the valve design and initial setting. 

The empirical coefficients C1, C2, C3, C4 and C5 within orifice equations                    (3- 10 and                          
(3- 11) were estimated by minimizing mass flow rate prediction errors using fully open TXV test data and 
non-linear regression. Fully open TXV test data were collected from the conditions where superheat of 
the compressor inlet was higher than the rated superheat. The empirical coefficients a3, a4, and a5 within 
the TXV model equation                    (3- 10 were estimated based on the available normal test data with 
superheat under control using linear regression. The data includes variations in ambient temperature, and 
indoor dry bulb temperature with positive subcooling entering the valve. Since equation                          
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(3- 11) uses subcooling as an input, zero subcooling data were disregarded for training and testing. The 
parameter estimation methods minimized the errors between predicted and known mass flow rates. The 
resulting model with empirical coefficients determined from normal data was applied to predict 
refrigerant mass flow rate for all of the available data including various fault conditions.  

Figure 3.33 shows refrigerant mass flow rate estimated from the VRMF sensor III for the TXV 
installed in system C-5 with six different kinds of faults individually implemented. The overall RMS 
errors were about 1% for no fault conditions and 3% of actual mass flow rate for all fault conditions. The 
performance of the VRMF sensor is very good over a wide range of refrigerant mass flow rates and 
operating conditions regardless of the fault. There were some significant errors of about 10% for low 
refrigerant charge levels when the entering subcooling was almost zero. With zero subcooling and two-
phase conditions entering the TXV, the VRMF sensor III may not be reliable.  

 

Figure 3.33 Performance of VRMF sensors III based on TXV model under no fault and fault 
conditions 

3.3.2.6. Application of VRMF sensors for fault detection and diagnosis 

Differences between the three VRMF sensors can be used within a diagnostic system to isolate 
compressor faults since the accuracy of the energy balance model and expansion device models are 
independent of compressor flow faults.   
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Figure 3.34 Comparison of VRMF sensor outputs for system C-5 with compressor flow fault 

 

Figure 3.34 shows comparisons of the three VRMF sensors with mass flow measurements for system 
C-5.  With a simulated compressor valve leakage fault, the refrigerant mass flow rate is reduced compared 
to normal operation.  As a result, the compressor map over-predicts refrigerant mass flow rate whereas the 
other VRMF sensors provide accurate flow estimates.  The RMS errors for compressor energy balance 
model and TXV models were about 2 %, whereas the RMS error for compressor model was 19 %.  Thus, 
a compressor flow fault could be isolated through comparison of the VRMF sensors for this case. 

3.3.2.7. Virtual Air Flow rate (VAF) sensor for condenser 

To diagnosis condenser fouling conditions, a virtual sensor for condenser air flow rate is employed. 
Air flow measurements are generally very expensive and unreliable for field applications.  Air flow rates 
can be estimated using energy balances on the condenser as expressed in equation                              (3- 
12). 
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where Vpredicted is condenser air volume flow rate, vcond,a is condenser air specific volume, Cp,air,cond is air 
specific heat, Ta,oc is condenser outlet air temperature, Ta,ic is condenser inlet air temperature, mref is 
refrigerant mass flow rate provided from VRMF sensor, hdis is discharge line refrigerant enthalpy, Pdis is 
discharge line pressure, Tdis is discharge line temperature, hli,in is liquid-line refrigerant enthalpy, Pli,in and 
Tli,in is liquid-line pressure and temperature. 

Predicted air flow rate can be compared to a target air flow rate to detect fouling. The target flow can 
be obtained from a manufacturer’s catalog or from a normal value when the FDD scheme is implemented 
assuming that there is no fouling.  The energy balance model has the limitation of not being valid when 
subcooling at the outlet of the condenser is zero.  However, zero subcooling is typically associated with 
low refrigerant charge, which can be diagnosed using the VRC sensor.  
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Figure 3.35 shows the condenser air flow rate estimated from the VAF sensor for system C-5 with 
normal and faulty conditions. Overall, the VF sensor predicted the target condenser air flow rate, 1300 
[CFM] within 3% except under condenser fouling fault conditions. As the severity of the condenser 
fouling increases, the estimated air flow rate is decreased. Condenser air flow rate reduction is an 
independent feature for condenser fouling. It also is a good feature for diagnosing condenser fan problems. 

 

Figure 3.35 Predicted condenser air flow from an energy balance versus expected value for system C-5   

 

3.3.2.8. Virtual Air Flow rate (VAF) sensor for evaporator 

Evaporator air flow is estimated from an energy balance using Equation                             (3- 13), 
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where Vpredicted,evap is evaporator air volume flow rate, vevap,a is evaporator air specific volume, ha,ie is 
evaporator inlet air enthalpy, ha,oe is evaporator outlet air enthalpy, mref is refrigerant mass flow rate 
provided from a VRMF sensor, hevap,out and hevap,in are evaporator refrigerant outlet and inlet enthalpy, 
Pevap,o and Tevap,o are evaporator refrigerant outlet pressure and temperature, and Pevap,o and Tevap,o are 
evaporator refrigerant outlet pressure and temperature. 

The indoor unit typically has more than one speed setting, but the air flow is constant for a given 
setting.  Therefore, the virtual sensor can be used to estimate the air flow rate for each fan setting and 
compared with a target air flow rate.  Figure 3.36 shows the accuracy of the air flow prediction from an 
energy balance for system C-5 with normal and faulty operation.  The overall RMS error is about 3%. As 
the fault level of evaporator fouling increased, there was bigger difference between the estimated and 
normal air flow rate of 1000 CFM.  
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Figure 3.36 Predicted evaporator air flow from an energy balance versus expected value for system C-5    

3.3.3. Assessments of Virtual Sensors using UTRC RTU Data 

3.3.3.1. Evaluation of virtual sensors based on laboratory test data 

Laboratory test data provided by UTRC was used to evaluate the performance of virtual sensors. 
Table 3.18 gives specifications for the 7.5 ton RTU system where data were obtained through laboratory 
testing. The system employed a TXV as the expansion device and R-410a as the refrigerant. The ranges 
of test conditions are given in Table 3.19.  Refrigerant charge levels were varied between approximately 
70 and 140% of nominal charge levels. The tests were performed at different operating conditions. The 
ambient temperatures ranged between about 83 and 113 °F. The indoor dry/wet bulb temperatures were 
considered from 70 to 80 °F and from 60 to 66 °F, respectively.  The damper position was kept at 100% 
for all tests. 

Table 3.18 Specification of system 

Nominal 
Capacity Refrigerant Expansion 

Type 
indoor coil 
airflow rate 

Outdoor 
coil airflow 

rate

Total  
Power of 
system 

Indoor 
fan 

Power 

Outdoor 
fan Power 

[tons]  -  - [CFM] [CFM] [W] [W] [W]
7.5  R410A TXV 2885 5750 6800 1350 497

 

Table 3.19 Testing conditions 

Return air Supply air Ambient Indoor Outdoor System

Dry 
temp. 

Wet 
temp. 

Dry 
temp. 

Wet 
temp. 

Dry 
temp. 

Airflow 
rate of 

nominal

Airflow 
rate of 

nominal

Damper 
Opening 

Refrigerant charge 
level 

[°F] [°F] [°F] [°F] [°F] [%] [%] [%] [%]
71 ~ 
81 60 ~ 66 50 ~ 67 46 ~ 65 83 ~ 

113 60, 78 100 100 70, 75, 80, 85, 100, 
140
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VRC sensor models 1 and 3 were evaluated in terms of RMS deviation between predicted and actual 
charge levels relative to nominal charges.  VRC model 1 was evaluated based on the use of default and 
tuned parameters and model 3 was evaluated based on tuned parameters only.  Figure 3.37 shows the 
performance of VRC sensor model 1 using default parameters.  The VRC sensor using default parameters 
can provide accurate estimates of refrigerant charge level, since the difference between actual and 
prediction charge levels is less than 10%.  The accuracy of the refrigerant charge predictions is good 
using default parameters, however the use of the default parameters led to some significant errors greater 
than 10% when the system was significantly overcharged. 

 

Figure 3.37 Performance of VRC sensor model 1 based on default parameters for UTRC laboratory 
data 

 

To increase the accuracy of the VRC sensor, the parameters were tuned for each specific system 
based on measurements obtained at different refrigerant charge levels.  When tuned parameters were 
applied to the models 1 and 3, the VRC sensors showed better performance than when the default 
parameters were used.  Figure 3.38and Figure 3.39 show the performance of VRC sensor models 1 and 3 
with tuned parameters.  The parameters for the VRC sensors were tuned by using 10 data points under 
four different refrigerant levels. The RMS errors were reduced to 4% for model 1 and 2% for model 3.  
The results verified that tuned parameters significantly improve the accuracy of the VRC sensor.  
Compared to model 1, model 3 led to some improvements in cases where model 1 shows some deviation 
at low refrigerant charge level.  
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Figure 3.38 Performance of VRC sensor model 1 based on tuned parameters for UTRC laboratory 
data 

 

Figure 3.39 Performance of VRC sensor model 3 based on tuned parameters for UTRC laboratory 
data 

 

Figure 3.40 shows performance of the VCP sensor for input power under no fault and refrigerant fault 
conditions.  The parameters for the VCP sensor were trained using normal operation data points only.  
The RMS error of the estimated input power consumption was less than 5% over a wide range of 
conditions.  Overall, the VCP Sensor is able to make accurate estimations of input power for the 
laboratory test data provided by UTRC.  
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Figure 3.40  Performance of VCP sensor for UTRC laboratory data 

Figure 3.41 shows performance of the VRMF sensor I based on the compressor map. The mass flow 
rate estimates were compared to measurements from laboratory test data.  The accuracy of VRMF sensor 
I is within 10% of the actual measured value.  The errors are somewhat higher (9%) at high refrigerant 
charge level, but the sensor outputs are still reasonable for this fault.   

 

Figure 3.41  Performance of VRMF sensor I based on compressor map for UTRC laboratory data  

Figure 3.42 shows the performance of VRMF sensor II based on the compressor energy balance.  The 
RMS error for the VRMF sensor II is less than 10% and works well regardless of the fault conditions 
applied.  However, there were some significant errors (10%) at high refrigerant charge level.  The 
incorrect compressor suction enthalpy due to a two-phase refrigerant inlet state led to the inaccurate 
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estimations. Additional work is necessary to accurately determine heat loss for overcharged condition 
using VRMF sensor II.  

 

Figure 3.42  Performance of VRMF sensor II based on energy balance for UTRC laboratory data 

The empirical coefficients of the orifice equation for VRMF sensor III were determined using non-
linear regression applied to fully open TXV data.  Equation 3-11 uses subcooling as an input so data with 
zero subcooling were not used to tune the parameters.  Once the empirical coefficients of the orifice 
equation were obtained, the TXV model was fit to normal operating (i.e., no-fault) data using linear 
regression.  Figure 3.43 shows performance of VRMF sensor III.  VRMF sensor III provides results that 
generally fall within 10% of the actual mass flow rate over a wide range of operating conditions.  Larger 
errors were produced under low refrigerant charge levels because the subcooling at the condenser outlet 
was below 2 °F.  
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Figure 3.43 Performance of VRMF sensor III based on TXV model for UTRC laboratory data 

3.3.3.2. Evaluation of virtual sensors based on field test data 

Field test data collected by UTRC were used to evaluate the performance of virtual sensors.  The 
specifications of the RTU system and the testing conditions are given in Table 3.20and Table 3.21.  The 
installed system had a cooling capacity of 10 tons using R410A as a refrigerant.  A TXV was used as an 
expansion device in the system.  The refrigerant charge was varied from 70 to 140% of normal charge.  
Condenser fouling was simulated by blocking a portion of the condenser heat exchange area. The effects 
of reduced air flow rate were considered from about 45 to 100% of the normal value.  During the field test 
period, the outdoor-air temperature was as high as 97 °F during the daytime and dropped as low as 61 °F.  
The indoor dry-/wet-bulb temperatures were as high as 86/75 °F and dropped as low as 68/38 °F.  The 
outdoor-air damper openings were varied between 0-100% during each normal and faulty test condition.   

Table 3.20 System specification for RTU system 

Nominal 
Capacity Refrigerant Expansion 

Type 
indoor coil 
airflow rate

Outdoor 
coil airflow 

rate

Total  
Power of 
system

Indoor fan 
Power 

Outdoor 
fan Power 

[tons] - - [CFM] [CFM] [W] [W] [W]
10 R410A TXV 3400 8300 9750 2760 800 

 

Table 3.21 testing condition for RTU system 

Return air Supply air Ambient Indoor Outdoor System 

Dry 
temp. 

Wet 
temp. 

Dry 
temp. 

Wet 
temp. 

Dry 
temp. 

Airflow 
rate of 

nominal

Airflow rate 
of nominal 

Damper 
opening 

Refrigerant 
charge 
level

[°F] [°F] [°F] [°F] [°F] [%] [%] [%] [%]
68 ~ 
86 

38 ~ 
75 

46 ~ 
66 82 ~97 61 ~ 97 100 45, 57, 70, 

100
0, 25, 50, 
75, 100 

70, 75, 80, 
85, 100, 
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140

 

The charging method specified by the manufacturer and the VRC sensor were evaluated using the 
RTU field test data.  The approach used to verify refrigerant charge in the field for this system required 
the use of pressure measurement at the service valve.  Compressor discharge pressure and liquid line 
temperature are used to indicate the charge level.  The technicians evaluated whether to add or remove 
refrigerant based on a difference between the measurement and a target value based on the charging chart 
supplied by the manufacturer.  

Figure 3.44 and Figure 3.45 show the manufacturers’ charging method for the RTU system monitored 
by UTRC under the various operating conditions.  The manufacturers’ approach uses discharge pressure 
and outdoor coil temperature for finding the nominal charging amount.  The solid line indicates the target 
pressure and temperature combination. The points that are above the line indicate that more refrigerant 
needs to be charged into the system and those below the line indicate that refrigerant needs to be removed.  

Figure 3.44 shows the charging results under no heat exchanger blocking. It showed 70-80% as 
undercharged, 90-100% as nominal, and 120% as overcharged.  Overall, the manufacturers’ charging 
method can provide accurate estimates when no heat exchanger blocking is present. 

Figure 3.45 shows the charging results when heat exchanger blockage is present.   While it showed 70% 
as undercharged, 80-90% was detected as nominal charge and 100-120% was detected as overcharged. 
This suggests that when there is condenser fouling the charging method can indicate normal charge even 
when the unit is undercharged by as much 20%.  In addition, the manufacturers’ charge verification 
utilizes pressure gauges or transducers installed at the service valve.  The installation of these gauges or 
transducers can lead to refrigerant leakage.  Because of these limitations, the current protocols for 
checking refrigerant charge may be doing more harm than good in many situations. 

 

Figure 3.44 Charging results based on manufacturers’ charging method under no heat exchanger 
blocking 
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Figure 3.45 Charging results based on manufacturers’ charging method under heat exchanger 
blocking 

 

Figure 3.46 and Figure 3.47 show the accuracy of VRC sensor models 1 and 3 based on tuned 
parameters using all test data points.  The performance was evaluated in terms of RMS deviation from the 
actual charge levels presented on a percentage basis. Figure 3.46 shows performance based on tuned 
parameters. Overall, the RMS errors of the VRC sensor algorithm for model 1 were 4% under no fouling 
conditions.  In many cases, the accuracy of the refrigerant charge predictions is good.  Although the VRC 
sensor can predict the charge amount within 10%, the errors were still large at high charge levels when 
the superheat exiting the compressor was nearly zero under low ambient temperature conditions.  

Figure 3.47 shows performance of VRC sensor 1 under fouling conditions. In this case, the RMS 
errors of model 1 were 9%.  When model 1 was applied, there were some points with significant 
refrigerant charge estimate errors compared to no fouling conditions.  In particular, the VRC sensor 1 
overestimates charge amount at high condenser fouling levels and conditions having almost zero 
subcooling. 
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Figure 3.46 Performance of VRC sensor model I based on tuned parameters under no condenser fouling 

 

Figure 3.47 Performance of VRC sensor model I based on tuned parameters under condenser fouling 

Figure 3.48 and Figure 3.49show the results of VRC sensor model 3. Figure 3.48 shows the results 
under no heat exchanger blocking. The model 3 based on tuned parameters showed RMS errors of 4 %.  
Accurate charge evaluations are possible for refrigerant charges less than 100%.  All results had less than 
10% error except when refrigerant was charged at 120% of the nominal charge. Overall, model 3 did not 
improve the performance of the VRC sensor compared to the model 1 under no fouling condition. 

Figure 3.49 shows the results under heat exchanger blocking.  The VRC model 3 is better than model 
1 for characterizing refrigerant charge levels with condenser fouling conditions present. Some data 
points between 80 and 90% refrigerant charge levels were slightly over 10%.  These points are 
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associated with large condenser blocking of approximately 50%.  The cases where the VRC sensor had 
difficulty were when the system operated with zero subcooling at over 50% reduction of condenser air 
flow rate.  In this case, the VAF sensor for condenser would be helpful predicting the condenser fouling 
fault.  

 

Figure 3.48 Performance of VRC sensor model III based on tuned parameters under no condenser fouling 

 

Figure 3.49 Performance of VRC sensor model III based on tuned parameters under condenser 
fouling 
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Figure 3.50 shows the performance of the VCP sensor. The VCP sensor can predict power 
consumption with RMS errors of ±5%. The VCP sensor also works well under multi-fault conditions 
such as condenser fouling and refrigerant charge. 

 

Figure 3.50 Performance of VCP sensors under normal and faulty conditions 

 

Figure 3.51 shows comparisons of VRMF sensor I predictions (based on a compressor map) and 
sensor II outputs using an energy balance under no fault and various fault conditions. A refrigerant mass 
flow meter data was not installed in this system to confirm the accuracy of the prediction. Because the 
results shown in VCP sensor based on compressor map are consistent with the power measurement, we 
relied on the compressor map predictions. The RMS errors between VRMF model I and II were less than 
10% for condenser fouling and refrigerant charge.  However, the RMS error was about 9% when 
multiple faults were tested.  The larger errors occurred when the superheat at the compressor inlet was 
below 1.5 °F.  The system was overcharged and serious condenser fouling was applied in these situations.  

Figure 3.52 shows comparisons of VRMF sensor I predictions based on a compressor map and 
VRMF sensor III outputs using the TXV model both with and without faults. The RMS errors between 
model I and III were less than 10%.  Except for several multiple simultaneous fault conditions, the VRMF 
works well regardless of the fault implemented.  Some of the larger errors may be associated with two-
phase refrigerant conditions at the TXV inlet with near-zero subcooling under low refrigerant charge and 
condenser fouling conditions.   
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Figure 3.51 Performance of VRMF sensors based on model I and II under normal and faulty 
conditions 

 

 

Figure 3.52 Performance of VRMF sensors based on models II and III under normal and faulty 
conditions 

A virtual air flow rate (VAF) sensor for the condenser based on an energy balance was evaluated 
based on the RTU field test data provided by UTRC.  Figure 3.53 and Figure 3.54 show the results after 
applying the VAF sensor.  This sensor was able to detect condenser blockage.  Figure 3.53 shows the 
results of VAF sensor under nominal refrigerant charge. As the heat exchanger blocking level increased, 
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the estimated air flow rate was decreased.  When the blocking level was over 40%, air flow rate 
decreased to 65% of the nominal air flow rate.  Air flow rate reduction is an independent feature for 
condenser fouling.  Figure 3.54 shows similar results but with a larger spread of predictions when the 
system was undercharged.  

 

Figure 3.53 Performance of VAF sensors for condenser under normal refrigerant charge level 

 

Figure 3.54 Performance of VAF sensors for condenser under different refrigerant charge levels 
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3.4.  Embedded AFDD (Automated Fault Detection and Diagnosis) for RTU 

3.4.1. System descriptions and test conditions for refrigerant charge, heat exchanger 
fouling, economizer, and supply fan faults 

A 4-ton RTU system was installed in the psychrometric chambers in Herrick Laboratories.  Table 
3.22 provides an overview of the RTU system that was tested.  To obtain data containing faults, 
laboratory tests were performed with the RTU system with faults injected. The ranges of test conditions 
are given in Table 3.23. Refrigerant charge levels were varied between 50% and 100% of nominal charge 
levels with outdoor temperatures between about 65 °F and 115 °F.  Data for relatively low outdoor 
temperatures were used to validate the algorithms for conditions that would occur during off-season when 
regular maintenance procedures are often performed.  Condenser fouling was simulated by blocking 
different amounts of the air inlet area. The blocked heat exchanger area ranged from 0% to 70%. The 
simulated method for evaporator fouling was to reduce indoor fan speed. 

A mass flow meter, thermocouples, and pressure sensors were installed in accordance with the 
refrigerant circuit schematic presented in the Figure 3.55.  Since an extra liquid line was added in order to 
install refrigerant mass flow meter, tests were performed to determine the nominal charging amount.  The 
refrigerant charge levels were determined using the subcooling obtained from the technical data provided 
from the manufacturer.   

Table 3.22 System specification 

Type Size (Tons) Refrigerant Compressor Expansion 
Device Accumulator 

RTU 10 R-410A Fixed-speed 
comp. TXV No 

 

Table 3.23 Test conditions 

Air indoor Temp. Air outdoor 
Temp. 

Outdoor H/X 
block area ratio

Indoor fan 
speed Refrigerant charge rate 

F F F [%] Hz % 
80 67 65, 95, 115 0, 15, 20, 45, 60, 70 60, 30, 15 50, 65. 75, 85, 100
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Figure 3.55 Schematic of RTU system 

 

3.4.2. Virtual sensor (refrigerant charge, refrigerant mass flow rate, and air flow rate) 
assessments for RTU  

Laboratory tests were performed on the RTU system to develop an initial FDD demonstration for 
refrigerant and air-side faults, including faulty economizer operation, heat exchanger fouling, and faulty 
refrigerant charge.  Data collected from these test have been used to build models and virtual sensors that 
will increase the sensitivity, robustness, and fault diagnostic capability of the tools.  

A number of virtual sensors (VRC, VRMF, and VAF sensors) were developed using the RTU test 
data.  The accuracy of the virtual sensors was evaluated for all of test data in terms of the RMS deviation 
from the actual measurements presented on a percentage basis.   

Figure 3.56 shows the performance of the VRC sensor based on model 1 with tuned parameters.  The 
regression techniques for tuning the parameters were applied to data points collected at the rated test 
condition over a range of refrigerant charge levels.  Overall, the RMS errors of the VRC sensor for model 
1 were 7%. However, there were some points where refrigerant charge estimates deviated from the actual 
charge when under evaporator fouling faults.  

Figure 3.57 shows performance of the VRC sensor based on model 3 with tuned parameters.  The 
RMS errors were reduced to 4% using this model.  The results verified that accuracy is improved using 
model 3 under normal and faulty conditions. Overall, the VRC sensor provided charge predictions that 
were within 10% of the actual charge and were typically within 5%.  Based on the data analyzed in this 
study, it appears that undercharging a unit by 10% would result in less than a 5% impact on efficiency and 
overcharging by 10% would have a minimal impact. Therefore a VRC accuracy of 5 to 10% is acceptable. 
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Figure 3.56 Performance of VRC sensor model 1 based on tuned parameters for RTU system. 

 

Figure 3.57 Performance of VRC sensor model 3 based on tuned parameters for RTU system. 

 

Figure 3.58 shows condenser air flow rate estimated from the VAF sensor for the RTU unit with 
normal and faulty conditions.  Predicted air flow rate based on the VAF sensor can be compared to a 
target air flow rate to detect fouling.  The target flow can be obtained from a manufacturer’s catalog or 
from a normal value when the FDD scheme is implemented assuming that there is no fouling.  Overall, 
the VAF sensor predicted the target condenser air flow rate within 10 % except under condenser fouling 
fault conditions. As the severity of the condenser fouling increases, the estimated air flow rate is 
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decreased. Condenser air flow rate reduction is an independent feature for diagnosing condenser fouling 
or fan problems. 

 

Figure 3.58 Predicted condenser air flow from an energy balance versus expected value. 

 

Figure 3.59 shows the accuracy of the air flow prediction from an energy balance with normal and 
faulty refrigerant charge.  The indoor unit typically has more than one speed setting, but the air flow is 
constant for a given setting. Therefore, the VAF sensor can be used to estimate the air flow rate for each 
fan setting and compared with a target air flow rate.  The VAF sensor for the evaporator predicted the 
target air flow rate based on the fan setting within 10%.  The VAF sensor based on an energy balance 
model has the limitation of not being valid when subcooling at the outlet of the condenser is zero.  
However, zero subcooling is typically associated with low refrigerant charge, which can be diagnosed 
using the VRC sensor. 
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Figure 3.59 Predicted evaporator air flow from an energy balance versus expected value based on fan 
setting. 

 

The virtual compressor power (VCP) sensor is used to estimate compressor input power using input 
measurements of inlet and outlet pressure.  The VCP sensor was trained based on normal and faulty 
operation data. Figure 3.60 shows performance of the VCP sensor under normal and faulty conditions. 
The RMS error of estimated input power consumption was less than 5% over a wide range of conditions. 
Overall, the VCP sensor provides accurate estimates for both no fault and faulty conditions. 

 

Figure 3.60 Performance of VCP sensor under no fault and fault conditions 

 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

99 

 

Figure 3.61 shows comparisons of the three VRMF sensors with mass flow measurements. The 
performance of the VRMF sensors is very good over a wide range of mass flow rates and test conditions 
both with and without faults.  The three VRMF sensors work well in estimating the refrigerant mass flow 
rate with less than a 10% RMS error.  There were some significant errors of over 10% for low refrigerant 
charge levels with zero subcooling (TXV model) and high refrigerant charge levels with zero superheat 
(energy balance model).  

 

Figure 3.61 Comparison of three VRMF sensor outputs for RTU unit 

 

3.4.3. Structure for a Diagnostic Decision System based on Virtual Sensors 

The primary objective of this section is to present a structure for a diagnostic decision support system 
for RTU air conditioners. The proposed FDD system is based on the use of virtual sensors as depicted in 
the block diagram of Figure 3.62. The FDD method is broken down into four steps: preprocessor, fault 
detection, fault diagnosis, and decision.  

In the preprocessor block, transient input and output measurements are filtered out using a steady 
state detector. Once measurements are collected, a fault detection step is used to determine if a fault has 
occurred. The FDD detection uses three types of virtual sensors; sensor level, component level, and 
system level. The outputs of the virtual sensors are processed by a fault classifier which compares outputs 
from the virtual sensors to expected values associated with normal behavior to evaluate whether a fault is 
present.  The fault diagnosis block determines the cause of the fault from a list of possibilities. Once, the 
existence of fault has been detected and identified, a decision block recommends the proper maintenance 
needed based upon economic considerations.  
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Figure 3.62 FDD block diagram for RTUs 

 

The virtual sensors can be divided into three classes: sensor-level, component-level, and system-level 
as depicted in Figure 3.63. The sensor level provides virtual sensors that replace real measurements (e.g., 
refrigerant pressure) using lower cost measurements (refrigerant saturation temperature) and correlations 
that do not depend on component performance (e.g., refrigerant property correlations). The component 
level sensors utilize component models (e.g., compressor maps) and low cost measurements to determine 
quantities (e.g., refrigerant mass flow rate) that can be used for fault detection and diagnosis and as inputs 
to evaluate fault impacts.  In order to be useful for isolating fault sources, these component level virtual 
sensors should provide outputs that are only influenced by individual faults within that component (e.g., 
compressor mass flow and valve leakage).  System level virtual sensors provide outputs for quantities that 
could not be determined solely using component level information, including overall refrigerant charge, 
cooling or heating capacity, and COP.   
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Figure 3.63 Virtual sensor classifications for air conditioner 

 

Widespread application of virtual sensors in air conditioning equipment would require an integrated, 
on-line performance monitoring and diagnostic system. To achieve an integrated system, the virtual 
sensors should have linkages with shared outputs and inputs, and provide real-time information about 
capacity, power consumption, and energy efficiency for assessing economic impact. Figure 3.64 shows an 
example of inter-relationships between real and virtual sensors within an integrated FDD system for air 
conditioning equipment. Sensor-level virtual pressure sensors estimate condensing and evaporating 
pressures using saturation temperature measurements and property relations. A component level virtual 
sensor for refrigerant flow rate uses the outputs of the virtual pressure sensors and a component model. 
The output of the derived virtual refrigerant flow sensor is used for input to a system level sensor (virtual 
performance sensor) to calculate COP or EER.  

 

Figure 3.64 Example of virtual sensor interactions for air conditioning equipment 
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3.4.3.1. Steady state detector for preprocessor 

A steady-state detector is used to filter out transient data, since the virtual sensors are based on 
steady-state operating conditions.  A combined slope and variance steady-state detection algorithm (Li 
and Braun, 2003) is used. This algorithm uses a fixed-length sliding window of recent measurements to 
compute the slope (k) of the best-fit line shown in Equation 3-14 and standard deviation about the mean 
shown in equation                                                   (3- 15).  If both the slope and standard deviation for the 
sliding window are smaller than corresponding thresholds, the system is assumed to be in a quasi-steady 
condition. The sliding window is specified by the number (n) of data points (ym, ym+1… ym+n-1) and 
sampling time (τ). 

A small threshold leads to more stable states, but less input data for FDD. On the other hand, large 
thresholds increase the uncertainty of the FDD outputs. Therefore, it is necessary to find thresholds that 
minimize the uncertainty of the FDD system while maximizing the use of input data. 

( ) , , 1,..., 1iy a k i m i m m m n                                             (3‐ 14) 

1 1
21 1

( )
m n m n
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   
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                                                  (3‐ 15)  

3.4.3.2. Fault detection  

Faults can be detected by comparing fault-free expected values to current values based on 
measurements, and analyzing their residuals. Virtual sensors provide estimates of current features that can 
be compared to expected values for fault-free operation.   A classifier is used to determine whether the 
deviation between current and expected values are statistically significant. In fault detection, estimated 
variables representing current operation are classified as normal or faulty. The residuals between outputs 
from virtual sensors and expected values for normal operation are used by a fault detection classification. 
The fault detection classifier estimates the overlap between probability distribution of residuals for 
current and normal operation. The probability for abnormal operation is lower than for normal operation 
based on statistical analysis. In this section, a statistical rule-based (SRB) fault detection classifier 
proposed by Rossi and Braun (1997), and a normalized distance fault detection classifier presented by Li 
and Braun (2007b) are reviewed.  

There are several possible statistical classifier designs for fault detection. A parametric design was 
chosen over a non-parametric design because it is assumed that measurement noise is caused by 
independent random processes that are normally distributed. A Bayes decision classifier is the best choice 
among the parametric classifiers. Equation                               (3- 16) shows the algorithm of the Bayes 
decision classifier, given by Fukunaga (1990). 

        011  
CC

T
CNN

T
N MYMYMYMY                               (3- 16) 

where Y is a vector of current residuals, MN is the mean vector matrix describing the distribution of 
residuals without faults (normal operation), ΣN is the covariance matrix describing the uncertainty of 
residuals without faults, MC is the mean vector matrix describing the distribution of current residuals, and 
ΣC is the covariance matrix describing the uncertainty of current residuals. 

The average covariance matrix is determined as the weighted average of ΣN and ΣC according to 
equation                               (3- 16). 
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  CN SS  1                                                           (3- 17) 

Equation                                             (3- 18) can be rewritten using equation                               (3- 16) 
and                                                           (3- 17) as 

    NCNN MMSSV  11                                               (3- 18) 

The classification error (ε) in the Bayes classifier can be calculated using residuals with normal and 
fault distributions for fault detection. Equation                               (3- 16) can be rewritten as equation                          
(3- 19) using equation                                               (3- 20) from Fukunaga (1990). A fault is indicated 
whenever the classification error is below a threshold, which is determined based on fault-free conditions.  
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where standard deviations of normal and fault conditions are VMV N
T

N 2 , and VMV C
T

C 2 . 

3.4.3.3. Fault diagnosis and decision 

Most of the earlier work involving FDD for air conditioning equipment has involved the use of 
residuals between measurements and expected values from models for state variables.  Once a fault is 
detected, then a fault diagnostic classifier is employed to find the best match between the changes in 
residuals and a set of rules associated with different types of rules.  One difficulty in applying this 
approach with a fault diagnosis classifier is in handling multiple faults that occur simultaneously because 
the state variables can depend on more than one fault along with the operating conditions as illustrated in 
Figure 3.65.  An FDD method should be able to decouple these effects in order to handle multiple 
simultaneous faults.   
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Figure 3.65 Overall fault interactions for air conditioning equipment 

 

Li et al. (2007b) presented a decoupling FDD approach that relies on the use of virtual sensors that 
are uniquely dependent on individual faults and decoupled from the effects of other faults.  Virtual 
sensors are used in place of real sensors in most cases because the measurements required for the 
decoupling features would be prohibitively expensive (e.g., refrigerant mass flow flow).  With the 
decoupling approach, it is not necessary to have a separate diagnostic classifier.  Fault diagnoses result 
directly from identifying when decoupled features deviate significantly from expected values as 
determined with the fault detection classifier.   

Once faults are detected and the causes of the faults are identified, proper action should follow to fix 
the problems, adapt the control, or flag them for continued monitoring. An assessment of the severity of 
the fault is essential to this decision process and virtual sensors for system performance can be used as 
inputs to this analysis.  Future work will address the fault impact evaluation and decision step. 

3.4.3.4. Fault detection and diagnosis analysis 

As an example, fault detection and diagnosis based on the Bayes classifier were applied to the 
residuals of refrigerant mass flow rate obtained with the three VRMF sensors.  A fault detection classifier 
is applied to each combination of residuals to identify the existence of a fault.  There are two possible 
fault diagnoses for this example:  low compressor flow due to a leaky valve or other internal fault and a 
faulty expansion device.   If a fault is detected based on statistical evaluation of the residuals, then the 
fault diagnosis is accomplished by identifying the specific virtual measurement that is responsible  

Data for system C-5 were used to evaluate the different fault detection classification methods and 
demonstrate the application of virtual sensors for fault diagnosis.  For the classifier approach, the 
minimum classification error based on analysis of normal data was found to be 9.3E-03.  Faults were 
identified if the deviation was lower than the minimum threshold value.  Table 3.24 shows the results of 
the analysis of the normal data used to determine the fault detection thresholds for the two approaches.  If 
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thresholds were set too close to normal conditions, the FDD system would be too sensitive leading to 
false alarms. If thresholds were set too far from normal conditions, on the other hand, the FDD system 
might miss faults that potentially reduce system performance. Therefore, it is very important to define 
reasonable thresholds for appropriate fault detection.  

Table 3.24 Calculation for threshold for  Bayes classifier 

Test Condition for system III 1) Compressor Map /
2) Energy balance

2) Energy balance / 
3) Expansion device 

1) Compressor Map /
3) Expansion device

# ID Temp. OD 
Temp.[C] 

Classification Error 
(ε) 

Classification Error 
(ε) 

Classification Error 
(ε) DB [C] WB [C] 

1 20 15 29 7.84E-02* 9.30E-03* 1.26E-02*
2 27 19 2.07E-02 3.41E-02 1.49E-02
3 20 15 35 6.06E-02 4.92E-02 2.99E-02
4 27 19 7.79E-02 5.02E-02 3.51E-02
5 20 15 40 2.91E-02 3.13E-02 1.55E-02
6 27 19 4.68E-02 3.13E-02 1.85E-02

 

Table 3.25 shows outputs from the Bayes fault detection classifier for a compressor valve leakage 
fault. The classification errors for residuals involving the compressor map were less than the threshold 
and indicating faults for most of the faulty cases.  However, residuals for the energy balance and 
expansion valve sensors were greater than the thresholds with no fault indications.  Based on the results, 
low compressor flow could be diagnosed as a fault. Although there were four points that were missed, 
they were all at low fault levels having relatively low impacts.  

Table 3.25 FDD response to compressor valve leakage based on Bayes classifier 

Test 
Fault 
Level 
[%] 

1) Compressor Map /
2) Energy balance 

1) Compressor Map /
3) Expansion device

2) Energy Balance /
3) Expansion device

Classification 
Error (ε) Diagnosis Classification 

Error (ε) Diagnosis Classification 
Error (ε) Diagnosis

3 

2.50 1.31E-02 No Fault 4.67E-02 No Fault 3.13E-02 No Fault
5.00 2.04E-04 Fault 1.02E-02 No Fault 3.44E-02 No Fault
9.30 0.00E+00 Fault 1.63E-05 Fault 3.51E-02 No Fault

11.40 0.00E+00 Fault 5.64E-08 Fault 3.49E-02 No Fault

4 

4.00 6.80E-05 Fault 1.51E-04 Fault 2.61E-02 No Fault
6.70 0.00E+00 Fault 3.25E-08 Fault 2.91E-02 No Fault
9.50 0.00E+00 Fault 0.00E+00 Fault 3.21E-02 No Fault

27.20 0.00E+00 Fault 0.00E+00 Fault 3.50E-02 No Fault
38.20 0.00E+00 Fault 0.00E+00 Fault 2.91E-02 No Fault

 

Table 3.26 shows outputs from the Bayes classifier under low refrigerant charge, condenser fouling, 
and liquid line restriction faults. All values were higher than the threshold, and thus no refrigerant flow 
faults were detected.  The results suggest that this method correctly decouples refrigerant flow faults from 
other faults in the system. 

Table 3.26 FDD responses to 1) low refrigerant charge, 2) condenser fouling, and 3) liquid line 
restriction faults based on Bayes classifier 

Test Fault 
Level 

1) Compressor Map /
2) Energy balance 

1) Compressor Map /
3) Expansion device

2) Energy Balance /
3) Expansion device
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[%] Classification 
Error (ε) Diagnosis Classification 

Error (ε) Diagnosis Classification 
Error (ε) Diagnosis 

5 

Refrigerant Charge fault
-10.00 8.50E-02 No Fault 3.04E-02 No Fault 2.61E-02 No Fault
-20.00 1.48E-02 No Fault 3.08E-02 No Fault 1.22E-02 No Fault
-30.00 5.69E-03 No Fault 4.42E-02 No Fault 1.45E-02 No Fault

Condenser fouling fault
5.00 5.95E-02 No Fault 3.85E-02 No Fault 3.46E-02 No Fault
10.00 6.17E-02 No Fault 5.02E-02 No Fault 3.47E-02 No Fault
20.00 1.48E-02 No Fault 5.08E-02 No Fault 2.90E-02 No Fault
35.00 8.01E-03 No Fault 4.61E-02 No Fault 3.00E-02 No Fault
50.00 4.34E-02 No Fault 5.05E-02 No Fault 2.86E-02 No Fault

Liquid line restriction fault
5.30 5.73E-02 No Fault 5.19E-02 No Fault 3.30E-02 No Fault
10.40 7.55E-02 No Fault 4.92E-02 No Fault 3.19E-02 No Fault
20.20 7.44E-02 No Fault 4.77E-02 No Fault 3.50E-02 No Fault

 

3.4.4. Economizer Fault Detection and Diagnosis 

3.4.4.1. Air-Side Economizer Control Strategies 

To reduce energy consumption during mild outdoor conditions, economizer control strategies are 
implemented. The economizer control mode is enabled based on outdoor-air dry-bulb temperature (dry-
bulb economizer) or a comparison between outdoor-air enthalpy and return-air enthalpy (enthalpy 
economizer). Most commonly, dry-bulb measurement of outdoor-air temperature is used to enable 
economizer control because required sensors for enthalpy controller are often not present or unreliable. 
Return-air relative humidity (RH) measurements are uncommon in packaged air conditioners. Concern 
for RH sensor maintenance and accuracy has discouraged adoption of enthalpy economizers as well 
(Taylor 2010).  Figure 3.66 and Figure 3.67 show detailed schematics of the economizer used in the 
packaged air-conditioner along with the direction of the air flows when the outdoor-air damper is open 
and closed. 
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Figure 3.66 Packaged air-conditioner ventilation configuration when supplying 100% outdoor-air. 

 

 

Figure 3.67 Packaged air-conditioner ventilation configuration when outdoor-air damper is fully closed 
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Dry-bulb economizers are enabled when the outdoor-air temperature falls below an activation or 
change-over temperature. The best change-over temperature is very dependent on the humidity of the 
climate where the economizer is installed.  In humid climates with large latent loads, the change-over 
temperature should be significantly lower than the return-air temperature (AHSRAE 2011).  In dry 
climates, the change-over temperature may be closer to the return-air temperature. 

By decreasing the mixed-air temperature using cooler outdoor-air, the coil load can be decreased or 
eliminated during mild or cold weather. Figure 3.68 shows a typical control sequence for a dry-bulb 
economizer with increasing outdoor-air temperature.  

 

Figure 3.68 Economizer control sequence for dry-bulb economizers with increasing outdoor-air 
temperature 

 

The economizer cooling sequence can be broken down into four modes or states.    



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

109 

 

Table 3.27  summarizes the position of the outdoor-air damper, compressor status, and heating coil 
status for each state. With a call for heating, the economizer controls the outdoor-air damper to the 
minimum position to minimize the amount of cold outdoor-air mixed with the return-air. Free cooling 
mode exists when the outdoor-air is sufficiently cool to provide the necessary cooling for the load. During 
this state, the compressor in the packaged air-conditioner is off and all cooling is essentially free. 
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Table 3.27 Economizer cooling states along with damper position, compressor status, and heating coil 
status for each state 

State Damper Position Compressor Heating 
Coil

1 – Heating Minimum Outdoor-Air Off On
2 – Free Cooling Controlled to maintain mixed-air set point Off Off

3 – Mechanical Cooling with 
        100% Outdoor-air 100% On Off 

4 – Mechanical Cooling with 
 Minimum Outdoor-air Minimum Outdoor-air On Off 

 

When the outdoor-air is sufficiently cool to provide cooling, but not enough to meet the cooling load 
in the space, the economizer enters State 3. During this state, the economizer controls the outdoor-air 
damper to the maximum position and the compressor is turned on to meet the remaining portion of the 
load. During this mode, cooling energy is reduced by minimizing the amount of warm return-air cooled. 

During times when the outdoor-air is warmer than the change-over set point, the outdoor-air damper 
is controlled to the minimum outdoor-air position and the compressor is used to control the supply-air 
temperature. During this mode, the quantity of outdoor-air is reduced to the minimum allowed by 
ventilation standards. 

3.4.4.2. Outdoor-Air Economizer Faults 

Faults in outdoor-air economizers (OAE) generally consist of outdoor-air damper position faults, 
temperature sensor faults, and controller faults.  Each of these faults can lead to poor performance of the 
OAE and may increase energy consumption over time. Typically, economizer performance is not closely 
monitored and careful maintenance practices are not followed.  In one study, it was found that as many as 
50% of all economizers installed in packaged air-conditioners will experience a fault over a fifteen year 
lifespan (CASE 2011). 

The most import faults in terms of the effect on energy consumption in packaged air-conditioners are 
damper position faults. This is because of the significant increase in cooling or heating energy required 
when the damper is stuck open, closed, or at some intermediate position. When the damper becomes stuck 
due to blockage, actuator failure, or control signal disconnect, the amount of outdoor-air entering the air-
conditioner is no longer controlled. 

Figure 3.69 shows the effects of a stuck outdoor-air damper during a simulated summer day. The 
outdoor-air damper was simulated as being stuck at the 70% open position, which causes a greater 
amount of outdoor-air to be brought into the building than is required. Because a greater fraction of 
outdoor-air is brought into the air-conditioner, a large difference between faulty and normal mixed-air 
temperatures exists. The normal mixed-air temperature was simulated by controlling the damper to the 
minimum position, which was set to 15%. The difference between the faulty and normal mixed-air 
temperatures translates to greater cooling energy required to maintain the space temperature. 

In the same way, a stuck damper can cause larger heating energy in the winter when it is stuck in an 
open position. The stuck damper causes colder outdoor-air to mix with the return-air, which lowers the 
mixed air temperature. Because the mixed-air temperature is lower, more heating energy must be used to 
maintain the supply-air temperature set point. 
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Figure 3.69 Simulated effects of a stuck open outdoor-air damper in the summer during a day. 

Stuck damper faults can also increase cooling energy consumption when the damper is stuck in a 
closed position. In this scenario, the outdoor-air conditions could be advantageous for economizer cooling 
but with no possibility for operation in this mode.  

Temperature sensor faults are also important in the operation of the OAE. When the outdoor-air 
temperature sensor is biased, it could in some cases lead to missed free cooling opportunities. This would 
occur if the outdoor-air temperature measurements were too high. Alternatively, if the outdoor-air 
temperature measurements were too low, the outdoor-air damper may be opened prematurely. 

Likewise, other temperature sensor faults can lead to incorrect operating modes and damper positions. 
When a mixed air temperature is measured incorrectly, the damper may be controlled to allow too much 
or too little outdoor-air as compared with proper operation. In differential temperature controllers that 
monitor a difference between outdoor- and return-air conditions, errors in either sensor can lead to 
incorrect operation of the economizer. 

3.4.4.3. Sensor Requirements 

For effective dry-bulb economizer diagnostics, at least four temperature sensors are required: 

 outdoor-air temperature entering air-conditioner 
 return-air temperature 
 mixed-air temperature in mixing box 
 supply-air temperature after supply-fan. 

Due to the compactness of the packaged air-conditioner, a single-point temperature sensor may 
provide a very inaccurate measurement air conditions across a duct. This is especially true in the case of 
the mixed-air temperature measurement where a very non-uniform temperature and flow pattern exists in 
the mixing box. Additionally, in order to gain some redundancy, the ability to compare the outdoor-air 
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temperature measurement to a more robust measurement from other packaged air-conditioners or via 
weather station data obtained online is useful for diagnostics. 

The economizer damper control signal sent to the outdoor-air damper actuator is useful for effective 
diagnostics as a means of estimating outdoor-air fraction. The ability to override the outdoor-air damper 
control signal is also advantageous to perform active diagnostics. 

3.4.4.4. Economizer Sensor-Correction and Estimation Models 

3.4.4.4.1. OAE Performance Testing 

In order to characterize the performance of the OAE, extensive testing was performed of the RTU 
installed at the Herrick Laboratories. These tests included running the packaged air-conditioner in 
economizer or fan-only mode in order to characterize how the system responds under different outdoor-
air temperatures and damper positions. Outdoor-air temperature and mixed-air temperature corrections 
were designed using this data. Additionally, an outdoor-air fraction model was created based on outdoor-
air damper position. 

Table 3.28 shows the tests performed to characterize economizer performance under varying 
conditions. A set of psychrometric rooms were used to control the outdoor and indoor conditions. A 
return-air duct was connected from the indoor room to the return-air inlet of the air-conditioner installed 
in the outdoor room. The OAE hood was installed within the air-conditioner, which enabled it to bring in 
outdoor room air when the damper was controlled open. The supply-air duct was connected from the 
outlet of the air-conditioner to a nozzle box flow meter station. A booster fan was installed downstream of 
the nozzle box to maintain differential pressure between the rooms. The tests were recorded once steady-
state conditions were reached and conditions were maintained for the duration of each test. During 
economizer testing, the compressor was disabled in order to maintain purely free-cooling mode operation. 
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Table 3.29 lists the air-side measurements recorded for the OAE tests. 

Table 3.28 Outdoor-air economizer performance test conditions for outdoor-air temperature, indoor-
air temperature, outdoor-air damper position, and supply fan speed. 

Outdoor Air 
Temperature 

ºC (ºF) 

Indoor Air
Temperature 

ºC (ºF)

Outdoor-Air Damper
Position 

(%)

Supply-Fan
Speed 

 
7.22 (45) 25.56 (78) 0, 25, 50, 75, 100 auto

12.78 (55) 25.56 (78) 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100 auto 

18.33 (65) 25.56 (78) 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100 auto 

21.11 (70) 25.56 (78) 0, 20, 40, 60, 80, 100 auto
23.89 (75) 25.56 (78) 0, 50, 100 auto
29.44 (85) 25.56 (78) 0, 20, 40, 60, 80, 100 auto

35.00 (95) 25.56 (78) 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100 auto 
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Table 3.29 Outdoor-air economizer test measurements. 

Measurement Type Configuration 
Outdoor-Air 

Temperature, Toa 
T-type thermocouples 9-point measurement grid, equally-spaced inside OAE 

hood after outdoor-air filter 
Return-Air Temperature, 

Tra 
T-type thermocouples 9-point measurement grid, equally-spaced inside return-

air duct before entering mixing box
Mixed-Air Temperature, 

Tma 
T-type thermocouples 16-point measurement grid, equally-spaced after air 

filter in mixing box. 
Supply Fan Inlet 

Temperature, Tsf,in 
T-type thermocouples 6 thermocouples mounted near centrifugal supply fan 

inlet
Supply-Air 

Temperature, Tsa 
T-type thermocouples 9-point measurement grid, equally-spaced inside 

supply-air duct after leaving air-conditioner
Outdoor-air Dew Point, 

Tdp,oa 
Dew point hygrometer 4-point measurement grid, equally-spaced inside OAE 

hood after outdoor-air filter 
Return-air Dew Point, 

Tdp,ra 
Dew point hygrometer Single-point dew point monitor located in return-air 

duct
Supply-air Dew Point, 

Tdp,sa 
Dew point hygrometer 4-point measurement grid, equally-spaced inside 

supply-air duct at supply-fan exit 

Return-Air Flow Rate, Hot-wire anemometer Anemometer mounted in return-air duct before entering 
mixing box 

Supply-Air Flow Rate, ASME nozzle box 
flow station

Nozzle box located downstream of air-conditioner 
supply 

Supply-Fan Power, Power meter Power meter measuring supply-fan power consumption

 

3.4.4.4.2. Single-Point Outdoor-Air Temperature Correction Model 

When performance testing the packaged air-conditioner in psychrometric rooms, the behavior of the 
outdoor-air temperature measurement was unexpected.  When the outdoor-air damper position was 
changed, the outdoor-air temperature also showed some change. Because a nine-point, thermocouple grid 
was installed upstream of the outdoor-air damper at the outdoor-air filter, it was believed that this 
measurement should be independent of the damper's position since it was upstream. On closer inspection, 
it was realized that return-air that was exhausted through the barometric relief vents on the air-conditioner 
was recirculated back into the outdoor-air intake hood. This behavior is illustrated in Figure 3.70. 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

115 

 

 

Figure 3.70 Return-air recirculation present in the packaged air-conditioner economizer hood. 

 

In order to confirm that return-air was recirculated into the outdoor-air inlet stream, observation of 
individual thermocouples in the measurement grid was used as evidence. The psychrometric room where 
the air-conditioner was installed was held at a constant temperature near 12.5 ºC (55 ºF) and the return-air 
temperature was held at a constant 25.8 ºC (78 ºF) during one test. As the damper was opened during this 
test, the average outdoor-air temperature increased. More specifically, the thermocouples near the bottom 
of the filter, near the barometric relief exhaust outlet, became warmer by as much as 6 ºC as the damper 
opened. This behavior is shown in Figure 3.71. 

In order to isolate that the warm temperatures were caused by recirculation air, the barometric relief 
vents were forced closed with aluminum tape. This ensured that no return-air could mix with the outdoor-
air in the economizer hood. The results, shown in Figure 3.72 indicate that warmer temperatures were 
caused by the exhaust air reentering the air-conditioner, since a uniform temperature was observed when 
the exhaust vents were forced closed. 
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Figure 3.71 Outdoor-air temperature grid for three different damper positions. Temperature measurements 
at the bottom of the grid are warmer than the rest of the thermocouples due to return-air recirculation. 
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Figure 3.72 Outdoor-air temperature grid for three different damper positions when barometric relief 
vents were forced closed. 

 

It is important to note that this is a problem in the design of the economizer hood and that the OAE 
FDD is not a solution for this. Because return-air recirculates into the packaged air-conditioner, the 
effectiveness of the economizer is decreased since it is unable to provide 100% outdoor-air. The air-
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conditioner still benefits from the economizer since the recirculation air comprises only a fraction of what 
enters. 

When the return-air is recirculated into air-conditioner, the temperature distribution in the economizer 
hood is non-uniform. Because of this non-uniformity, the outdoor-air measurement becomes inaccurate 
when a single-point measurement is used. Depending on the placement of the thermocouple, the 
inaccuracy can become significant. Additionally, estimating outdoor-air fraction using temperature 
measurements requires accurate measurements. At the same time, in order to keep costs low, a single-
point temperature measurement is attractive to manufacturers. 

To balance cost and outdoor-air temperature sensor accuracy, a correction model was made that 
allows use of a single-point sensor. Since an accurate temperature of the outdoor-air entering the 
economizer hood was required for training, the mean value of the nine-point thermocouple grid was used. 
In order to account for return-air that may be recirculated into the hood, a return-air measurement and the 
outdoor-air damper control signal were used to build a model. The functional form of the corrected, 
single-point outdoor-air temperature, Toa,corr, is shown in equation                                (3- 21). 

 , 0 1 , 2 , 3oa corr oa meas ra meas cmdT c c T c T c OAD                                   (3- 21)  

where Toa,meas is the single-point outdoor-air temperature measurement, Tra,meas is the single-point return-
air temperature measurement, OADcmd is the outdoor-air damper control signal, and 
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The model regression was performed using the thermocouple at the center of the measurement grid as 
the single-point sensor. This thermocouple was chosen because its placement gave the best estimate of the 
average outdoor air temperature before correction. A comparison between the corrected outdoor-air 
temperature as a function of the actual outdoor-air temperature is plotted in Figure 3.73. The correction 
model showed good accuracy with a maximum error of ±1.0 ºC. 
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Figure 3.73 Corrected single-point outdoor-air temperature model fit. 

 

3.4.4.4.3. Single-Point Outdoor-Air Temperature Correction Model 

Mixed-air temperature is an important measurement for estimating outdoor-air fraction, OAFest,ma, 
based on an energy balance on the mixing box (Friedman 2001): 

,
ma ra

est ma
oa ra

T T
OAF

T T





                                                            (3- 22) 

Since the return-air stream is generally well-mixed at its measurement location a single-point 
temperature measurement is sufficient. Outdoor-air temperature can be reliably estimated using the 
correction-model previously mentioned. However, a robust mixed air-temperature measurement is needed 
to realize accurate outdoor-air fraction estimates. 

The small size of the mixing chamber in an RTU can lead to very non-uniform conditions and make it 
very difficult to measure mixed-air temperature accurately. In Figure 3.74, the mixed-air temperature 
measured at sixteen locations before entering the evaporator is shown.  The damper was held at 60% open 
during the test. The color scale in the figure ranges from the outdoor-air temperature (blue) to the return-
air temperature (red). Clearly, a large non-uniform temperature distribution exists within the mixing box. 
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Figure 3.74 Non-uniform mixed-air temperature distribution at the evaporator inlet position with the 
outdoor-air damper 60% open. The color scale ranges from outdoor-air temperature (blue) to return-air 

temperature (red) 

 

There are two possible solutions to overcome this problem. The first is to use a measurement grid 
inside the mixing box to calculate an average temperature, which could be used as an estimate. However, 
this solution increases the instrumentation cost of FDD. Additionally, a simple average assumes that the 
mass flow rate of air at each measurement location is the same. Due to the small geometry of the mixing 
box, and the locations and directions of the entering outdoor-air and return-air streams, this is a poor 
assumption. 

A better solution is to perform a correction to a single-point mixed-air temperature sensor. This keeps 
the mixed-air temperature measurement costs low and accounts for non-uniform temperature and flow 
across the evaporator. In order to build a correction model, a robust measurement of the mixed-air 
temperature is required for a range of outdoor-air temperatures and damper positions. Unlike the outdoor-
air temperature, a simple average is not sufficient because of non-uniform velocities so another 
measurement must be used. For this purpose, the supply-air temperature is used when the compressor is 
off to train the mixed air correction factor. 
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When the compressor is off, the refrigerant circuit provides no cooling effect in the evaporator. 
Therefore, the supply-air and mixed-air temperatures should be nearly equal. The only difference between 
these temperatures is the temperature rise caused by the supply fan. Therefore, by characterizing the 
supply fan temperature rise, the supply-air temperature can be used to build the mixed-air temperature 
correction model. An added advantage of using this measurement is that the air-stream is well-mixed 
since it passes through the supply fan. 

The supply fan temperature rise, ΔTsf, can be calculated using an energy balance between the inlet and 

outlet of the fan, given by equation 

sf
sf

sa p

W
T

m c
 




                                                                (3- 23). 

sf
sf

sa p

W
T

m c
 




                                                                (3- 23) 

where ሶܹ ௦௙ is the supply fan power transferred to the airstream, ሶ݉ ௦௔ is the mass flow rate of air, and cp is 
the specific heat of air. In order to account for the dependence of supply fan speed on the supply fan 
power, the following form was used to predict the supply fan temperature rise, 

 

2

, 0 1 2
sf sf
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sa p sa p
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   
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   

 

 
                                                (3- 24) 

where ሶܹ ௦௙  was measured using a power meter, ሶ݉ ௦௔  was measured using a nozzle box and ci are 
regression coefficients. The regression was performed on test data whose outdoor-air and return-air 
temperatures were the same. This ensured that the non-uniform temperature distribution would have no 
impact on the average mixed-air temperature measurement. The coefficients determined using the test 
data were 
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The results of the supply fan temperature predicted by the model are plotted against the actual 
measured values in Figure 3.75. The model showed good behavior with a maximum prediction error of 
less than ±0.05 ºC. 
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Figure 3.75 Predicted supply fan temperature rise model results 

 

Using the predicted supply fan temperature rise, a more robust mixed-air temperature estimate was 
used, given by equation                                                              (3- 25). 

 , , ,ma rob sa meas sf predT T T                                                                (3- 25) 

To correct the mixed-air temperature, a simple model was formed to account for the outdoor-air 
damper influence and the difference between outdoor- and return-air temperatures. Equation                          
(3- 26) gives the form of the corrected single-point mixed-air temperature, Tma,corr, regression equation, 

  , 0 1 , 2 , ,ma corr ma meas oa corr ra meas cmdT c c T c T T OAD                              (3- 26) 

where Tma,meas is the uncorrected, single-point mixed-air temperature measurement and ci are 
regression coefficients. Using data collected from the OAE tests, the mixed-air temperature 
correction model was fitted. The resulting regression coefficients are shown below. 
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The results of the mixed-air temperature correction model are plotted against the robust mixed-air 
temperature measurement in Figure 3.76. The data plotted included the range of temperatures and damper 
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positions detailed in the OAE testing section. Also plotted are the uncorrected single-point mixed-air 
temperature measurements in order to show the improvement made by the model. 

 

Figure 3.76 Corrected single-point mixed-air temperature model fit. 

 

3.4.4.4.4. Outdoor-Air Fraction Estimation Model 

Outdoor-air fraction is a critical metric for OAE fault detection because it is an indicator of damper 
position and temperature sensor faults. Outdoor-air fraction (OAF) is defined as the amount of outdoor-air 
brought into the building as a fraction of the total supply-air used to maintain the space temperature, given 
by equation                                                         (3- 27) , 

 oa

sa

m
OAF

m




                                                        (3- 27)  

where ሶ݉ ௢௔ is the outdoor-air mass flow and ሶ݉ ௢௔ is the supply-air mass flow rate. Since a mass air-flow 
rate is never measured in packaged-air conditioners, an alternative estimate must be used. Typically, the 
estimation proposed by Friedman and Piette (2001) is used as the estimate, given in equation                          
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(3- 22). This estimate is acceptable when an accurate mixed-air temperature measurement is present. If 
this is not the case, an alternative OAF estimation that relies on supply-air temperature must be used, 
given by equation                                                  (3- 28). 

 ,
sa sf ra

est sa
oa ra

T T T
OAF

T T

 



                                                 (3- 28) 

This estimation is only valid when the compressor is off, since Tsa ≈ Tma in this case. OAF estimates 
that use outdoor-air and return-air temperatures are not valid when these two temperatures are equal or 
almost equal. For this reason, these estimations are only performed when the difference between outdoor- 
and return-air temperatures is greater than 2 ºC. 

While estimations using temperature sensors are indicators of current operating conditions, it is also 
desirable to have another estimate for the expected outdoor-air fraction when the air-conditioner operates 
normally. This was accomplished with the packaged air-conditioner, by using the OAE test data to 
characterize the OAF behavior under different outdoor-air damper positions and temperatures. This 
behavior is shown under different temperature conditions in Figure 3.77. From the response, it should be 
noted that significant leakage exists when the damper is all the way closed and open. Some of the leakage 
when the damper opens is actually due to return-air recirculation. 

 

Figure 3.77 OAF response to different outdoor-air damper positions under different outdoor-air 
temperatures. 
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Because of the leakage and return-air recirculation present, the OAF response to changing damper 
position is not linear. To form an accurate model, the following function form using damper position was 
used 

2 3
0 1 2 3pred cmd cmd cmdOAF c c OAD c OAD c OAD                              (3- 29) 

where 
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c
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The resulting model is shown in Figure 3.78 against the outdoor-air fraction estimate using equation                          
(3- 22). 

 

Figure 3.78 Outdoor-air fraction model fit. 
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3.4.4.5. Economizer Fault Detection and Diagnostics 

Economizer fault detection and diagnostics has been separated into two separate procedures.  Fault 
detection is performed on-line throughout the operation of the packaged air-conditioner monitoring 
performance.  Fault diagnostics is only employed when a fault is detected.  Unlike the fault detection 
operation, fault diagnosis takes active control of the outdoor-air damper in order to determine a diagnosis 
of the fault.  The operational flow of the FDD algorithm is shown in Figure 3.79. 

 

Figure 3.79 FDD Overall Flow Chart 

 

3.4.4.5.1. Outdoor-Air Fraction Based Economizer Fault Detection 

Typically, economizer fault detection and diagnostics tools rely on a small set of rules that are used to 
indicate problems within the economizer (Schein 2003) (Seem 2009). These rules often compare an 
estimate of outdoor-air fraction to an expected value when the damper is in a known position. Most 
commonly, these rules are applied when the outdoor-air damper is at the minimum position acceptable to 
meet the ventilation requirement or at the 100% open position. Additionally, many of the FDD tools are 
designed for built-up systems so additional rules that monitor the hot and cold water valves are used. 

While these tools have been shown to be effective at detecting economizer faults, a more simple 
approach can be implemented for packaged-air conditioners (Hjortland 2012). Because characterizing the 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

127 

 

performance of a packaged-air conditioner is much easier and cost-effective than a built-up system, rules 
can be made to monitor operation at all times instead of at a discrete set of damper positions. For instance, 
the outdoor-air fraction model can be used to monitor current damper position and temperature sensors 
when the compressor is running or during free-cooling. When current performance measured using 
temperature sensors deviates from the expected performance, a fault is detected. 

A list of metrics that could be used to monitor the system's performance and detect deviations from 
normal behavior was made. The first metric, M1, is used to monitor the components of the mixing box and 
it is defined as the residual between the expected outdoor-air fraction and the estimated outdoor-air 
fraction given by equation                                                           (3- 30), 

 1 ,pred est maM OAF OAF                                                            (3- 30) 

where OAFpred is given by equation                           (3- 29) and OAFest,ma is given by equation                          
(3- 22). Because the outdoor-air fraction is controlled by the outdoor-air damper in the mixing box, this 
metric is decoupled from the refrigerant circuit. The outdoor-air fraction is estimated using the outdoor-, 
return- and mixed-air temperatures and without the supply-air temperature, thus any cooling taking place 
in the evaporator has no effect. Therefore, this metric is suitable whenever the air-conditioner is in 
operation; when the supply-air fan is on. 

The second performance metric aims to detect controller faults.  This is accomplished by comparing 
the outdoor-air damper position controlled by the economizer controller to the damper position calculated 
using economizer control strategy logic within the FDD software.  This comparison is useful to detect if 
the economizer is locked out or disabled for some reason.  This metric would also detect if the 
economizer is economizing when it shouldn’t be or not economizing when it should be possibly to do 
poor set points. 

In order to detect faults, a method to distinguish between normal behavior and faulty behavior is 
needed.  Hypothesis testing is used to accomplish this.  More specifically, a t-test is used to determine if 
the means of the current performance metrics differs from the metrics calculated using normal test data. 

A hypothesis test is used to either reject or confirm a null hypothesis.  In this case, the null hypothesis 
is the current data sample has the same mean as the normal data.  Essentially, the test measures whether 
the average value differs from the expected value.  The indicator used to test the hypothesis is called the 
p-value, which is the probability of obtaining a hypothesis test at least as extreme as the one that is 
actually observed.  If the p-value is smaller than a threshold, e.g. 1%, 5%, etc., then the hypothesis is 
rejected.  When the hypothesis is rejected, a fault is declared. 

Hypothesis testing may be more easily understood using a diagram.  Shown in Figure 3.80 is a 
histogram of M1 studentized (studentizing is simply dividing the sample by its standard deviation) along 
with the expected distribution of the metric based on normal data.  100 points of steady-state data when 
the damper was at 60% with an outdoor-air temperature of 12.78 °C were used to evaluate the current 
performance.  The normal operational data showed a similar distribution to the data that was collected 
during training.  Because of this, the p-value was near one and no difference in the mean of the current 
operation of the economizer could be detected.  If this was collected in actual operation, no faults would 
be detected. 
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Figure 3.80 Histogram of fault-free economizer operation when outdoor-air damper is at 60% and 
outdoor-air temperature at 12.78 °C.  Note that the M1 matches closely with the expected behavior, which 

makes the p-value close to 1. 

 

Figure 3.81 shows the behavior of the outdoor-air fraction performance metric when there is a damper 
fault present.  In this situation, the damper was held at the 40% open position with an outdoor-air 
temperature 12.78 °C.  The damper was simulated to be controlled at 60% open, thus creating a fault.  A 
clear deviation in performance between normal and actual operation exists, which indicates the presence 
of a fault.  This is reinforced by the near zero p-value of the t-test, which leads to the rejection of normal 
operation. 

Another example of an economizer fault that is determined using the outdoor-air fraction metric is an 
outdoor temperature sensor fault.  In this case, test data were used where the outdoor-air damper was 100% 
open with an 18.33 °C outdoor-air condition.  A -2.0 °C sensor bias was added to the outdoor temperature 
data and then was processed using the fault detection algorithm.  The resulting M1 histogram is shown in 
Figure 3.82. 
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Figure 3.81 Histogram of the outdoor-air fraction metric, M1, with a 20% difference between the 
controlled and actual damper position at an outdoor-air temperature of 12.78 °C.  A clear deviation exists 

between the current and normal operation, signifying an economizer fault. 

 

Figure 3.82 Histogram of the outdoor-air fraction metric, M1, when a -2.0 °C sensor bias is applied to the 
outdoor-air temperature sensor. 
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In order to use this method to detect OAE faults, a threshold must be chosen that maintains good fault 
detection sensitivity while reducing false alarm rates.  The p-value is important in determining whether to 
reject the null hypothesis, so a p-value threshold is needed.  As stated earlier, the p-value is the 
probability that the current sample is equivalent to the normal data that was determined using test data.  
For fault detection, the p-value chosen that provided good fault detection effectiveness was 0.01.  This 
value yielded good results when using the test data for both stuck damper faults as well as temperature 
sensor bias faults. 

Table 3.30 details the results of applying the fault detection algorithm to the OAE test data collected 
under various steady-state normal and faulty conditions.  For stuck damper faults, the fault condition is 
defined as the deviation between the actual damper position and the expected position if it were working 
properly.  For temperature sensor faults, the fault condition is defined as a difference between the “sensed” 
temperature and the actual temperature.  The fault detection algorithm performed well when using a p-
value threshold of 0.01.  No false-alarms were produced for the normal data processed at different 
outdoor-air temperature and damper positions.  The method was also able to detect damper faults that 
deviated by 20% of the expected position.  Faults were declared for all temperature sensor faults that 
deviated from the actual measurement by 2 °C except for one case. 

Table 3.30 Fault detection results for normal data and various types of faults. 

Fault Condition Outdoor-Air
Temperature 

(°C)

Expected Damper 
Position 

(%)

t-test 
p-value 

[-] 

Status

Normal 12.78 20 0.7364 Normal
Normal 12.78 50 0.9837 Normal
Normal 12.78 100 0.8139 Normal
Normal 18.33 80 0.6793 Normal
Normal 35 0 0.7996 Normal
Normal 35 20 0.4728 Normal

-10% Damper Position Fault 12.78 100 0.0733 Normal
-20% Damper Position Fault 12.78 70 0.0025 Fault
-30% Damper Position Fault 12.78 100 0.0014 Fault
-10% Damper Position Fault 18.33 90 0.0292 Normal

-20% Damper Position Fault  18.33 60 0.0056 Fault
+30% Damper Position Fault 18.33 70 0.0051 Fault
+20% Damper Position Fault 35 20 0.0001 Fault
+30% Damper Position Fault 35 10 0.0005 Fault

+1.0 °C Outdoor-Air Sensor Fault 12.78 100 0.7695 Normal
+2.0 °C Outdoor-Air Sensor Fault 12.78 100 0.0095 Fault
+3.0 °C Outdoor-Air Sensor Fault 12.78 90 0.0023 Fault
+1.0 °C Outdoor-Air Sensor Fault 18.33 100 0.2832 Normal
+2.0 °C Outdoor-Air Sensor Fault 18.33 80 7.1E-5 Fault
+3.0 °C Outdoor-Air Sensor Fault 18.33 100 0.0010 Fault
+1.0 °C Mixed-Air Sensor Fault 12.78 100 0.6454 Normal
+2.0 °C Mixed-Air Sensor Fault 12.78 80 0.0034 Fault
+3.0 °C Mixed-Air Sensor Fault 12.78 100 0.0036 Fault
+1.0 °C Return-Air Sensor Fault 29.44 20 0.6321 Normal
+2.0 °C Return-Air Sensor Fault 29.44 20 0.2531 Normal
+3.0 °C Return-Air Sensor Fault 29.44 0 0.0091 Fault
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3.4.4.5.2. Active Economizer Diagnostics using a Bayesian Classifier 

In order to diagnose OAE faults, one method is to take active control of the outdoor-air damper in 
order produce system redundancy.  This system redundancy is desirable because it narrows down the 
possible sources of the fault by comparing equivalent measurements.  A simplified approach to active 
OAE diagnostics is shown in Figure 3.83 (Fernandez 2009).  Typically, the damper is controlled all the 
way closed and then all the way open.  At these positions, steady-state data is collected with the cooling 
system off.  Ultimately, the mixed-air temperature is compared with the return- and outdoor-air 
temperatures at each location and a diagnosis is determined using a set of logical expectations. 

 

Figure 3.83 OAE active diagnostics using only dry-bulb temperature sensors and control of the 
outdoor-air damper position (Fernandez 2009). 
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While this type of method is able to correctly identify different faults in air-conditioning systems, 
there is a lack of rigor.  There is no sense of a statistical confidence associated with the diagnoses.  In 
order to evaluate a level of confidence associated with a diagnosis, a Bayesian classifier has been used 
along with the active diagnostics approach.  A Bayesian classifier is a simple probabilistic classifier 
applying Bayes’ theorem: 

      
 

|
|

P B A P A
P A B

P B
                                                       (3- 31) 

Bayes’ theorem gives the relationship between the probabilities of A and B (denoted by P(A) and P(B)) 
and the conditional probabilities of A given B, P(A|B), and B given A, P(A|B).  Because a probability is 
essentially a measure of confidence and a conditional probability is a measure of confidence while 
knowing some evidence, Bayes’ theorem links the confidence of a proposition before and after 
accounting for evidence. 

It is assumed when applying a Bayesian classifier that each feature of a class is independent of the 
features of other classes.  In the case of economizer diagnostics, a feature could be any measurement of 
performance that is altered when a fault is present and a class is a specific type of fault.  Essentially, the 
Bayesian classifier is a set of rules for determining a class by minimizing the probability of making a 
wrong decision.  Active diagnostics is used with the outdoor damper controlled all the way closed and all 
the way open to collect steady-state data.  Once the data has been collected, the current operation is 
classified according to type of fault. 

In order to classify the faults, a set of residuals is used to characterize the current operation of the air-
conditioner.  Approximately half the residuals are calculated when the outdoor-air damper is closed; the 
other half when the damper is open. 

When the damper is closed, the mixed-air temperature should equal the return-air temperature, 
yielding the first residual: 

 1 ,ra ma corr closed
r T T                                                             (3- 32) 

Since the compressor is off when active diagnostics is performed, the mixed-air temperature should 
also equal the supply-air temperature when the damper is closed: 

 2 ,sa ma corr closed
r T T                                                           (3- 33) 

The third residual compares the measured outdoor-air temperature to a robust outdoor-temperature 
measurement Toa,rob. 

 3 , ,oa corr oa rob closed
r T T                                                          (3- 34) 

The robust outdoor-air measurement could be obtained in a few different ways.  One method could be 
to obtain a local air temperature measurement from a meteorological website.  Another method could be 
to use other rooftop unit outdoor-air temperature measurements if there are more units available at the 
location.   

The difference between the predicted and estimated outdoor-air fractions using mixed-air temperature 
is determined when the damper is closed and defines the fourth residual: 
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 4 ,pred est ma closed
r OAF OAF                                                     (3- 35) 

The last residual calculated with the outdoor-air damper closed is the similar to the fourth; however it 
uses the supply-air temperature to estimate the outdoor-air fraction: 

 5 ,pred est sa closed
r OAF OAF                                                     (3- 36) 

After collecting steady-state data with the damper closed, the damper opens to the maximum position.  
At this position, the mixed air-temperature should equal the outdoor-air temperature: 

 6 ,oa ma corr open
r T T                                                              (3- 37) 

The remaining residuals are identical to the residuals r2, r4, and r5 except they are calculated when the 
outdoor-air damper is all the way open. 

  7 ,sa ma corr open
r T T                                                            (3- 38) 

 8 ,pred est ma open
r OAF OAF                                                    (3- 39) 

 9 ,pred est sa open
r OAF OAF                                                    (3- 40) 

When these residuals are calculated, they can be used to classify the current operation.  When the 
system is operating normally, all of these residuals should be near zero.  For a fault, some of these 
residuals will change and will deviate from the normal value.  In fact, each different fault will have a 
different set of residual responses.  Table 3.31 shows a list of possible economizer faults along with a 
designated classification. 

Table 3.31 Types of economizer faults with Bayesian classifier class 

Type of Fault Class 
No Fault – Normal 0 

Outdoor-Air Damper Fault 1 
Return-Air Temperature Fault 2 
Mixed-Air Temperature Fault 3 

Outdoor-Air Temperature Fault 4 
Supply-Air Temperature Fault 5 

 

This is explained most easily with an example.  When the damper becomes stuck, the fault detection 
algorithm will declare a fault is present and activate the fault diagnosis algorithm.  Diagnosis will be 
performed at the next available time, most likely when the building becomes unoccupied.  The 
diagnostics algorithm will attempt to control the damper to the all the way open and closed positions and 
collect steady-state data.  The response of the set of residuals is shown in Table 3.32.  When the damper is 
stuck, the mixed- and supply-air temperature should remain equal.  This is why, along with residual r3, 
these residuals do not deviate from the normal behavior even with a fault present. 
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Table 3.32 Residual response to stuck damper fault. 

R r1 r2 r3 r4 r5 r6 r7 r8 r9 
Response ↑   ↑ ↑ ↑  ↑ ↑ 

 

In a similar manner, the other types of faults display a set of residual responses, R.  These are 
tabulated in Table 3.33.  The most important characteristic of these different residual responses is that 
they are unique.  Each different type of fault has a different residual response, which makes classification 
possible. 

Table 3.33 Summary of economizer residual responses. 

 R 
Class r1 r2 r3 r4 r5 r6 r7 r8 r9 

0          
1 ↑   ↑ ↑ ↑  ↑ ↑ 
2 ↑   ↑ ↑   ↑ ↑ 
3 ↑ ↑  ↑  ↑ ↑ ↑  
4   ↑ ↑ ↑ ↑  ↑ ↑ 
5  ↑   ↑  ↑  ↑ 

 

The Bayesian classifier must be trained before it can be used to diagnose faulty economizer operation.  
Training consists of building arrays of the residual responses and fault classifications that correspond to 
one another.  In order to do this, the OAE performance test data was used to train normal operation and 
faulty operation.  For normal operation, the fault diagnosis residuals were calculated under different 
outdoor-air temperatures with the damper controlled to 0% and 100%.  This data is representative of how 
the economizer would react if fault diagnosis were being performed when there was not an actual fault 
present. 

The damper faults were trained using the same data set, however instead of using only 0% and 100% 
damper positions, intermediate positions were also provided.  In order to simulate a stuck damper at the 0% 
position, the residuals that are normally calculated when the damper is all the way open were calculated 
using with the closed position data.  The opposite was done to simulate a stuck damper at 100%.  
Temperature sensor faults were trained by applying increasing bias to each measurement in the range of 
±1-5.  Table 3.34 details the types of data that were used to train each fault class. 

Table 3.34 Bayesian classifier training data. 

Class Outdoor-Air 
Temperature 

(°C) 

Outdoor-Air
Damper Position 

(%)

Temperature
Sensor Bias 

(°C)
0 12.78, 18.33, 29.44, 35.00 0, 100 None
1 12.78, 18.33, 29.44, 35.00 0, 20, 40, 60, 80, 100 None
2 12.78, 18.33, 29.44, 35.00 0, 100 Tra ±1, 2, 3, 4, 5
3 12.78, 18.33, 29.44, 35.00 0, 100 Tma ±1, 2, 3, 4, 5
4 12.78, 18.33, 29.44, 35.00 0, 100 Toa ±1, 2, 3, 4, 5
5 12.78, 18.33, 29.44, 35.00 0, 100 Tsa ±1, 2, 3, 4, 5
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The results of testing the algorithms against normal data are shown in Table 3.35 along with the 
probability of each test belonging to each fault class Ci.  This probability, P(Ci|R’), is known as the 
posterior probability estimate.  The situation where fault diagnostics is applied to an economizer that is 
operating normally could occur if the fault detection algorithm declares a false alarm.  Classifying normal 
operation has the benefit of reducing the number of false alarms that are reported to the building manager.  
The results of applying the fault diagnostics algorithm to normal data showed no misclassification and 
showed high levels of statistical confidence.  

Table 3.35 Results of applying the fault diagnostics approach to normal operation data. 

Toa 
(°C) P(0|R’) P(1|R’) P(2|R’) P(3|R’) P(4|R’) P(5|R’) Fault

Class
7.22 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
12.78 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
18.33 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000 0
21.11 0.9523 0.0476 0.0000 0.0000 0.0000 0.0000 0
29.44 0.9988 0.0002 0.0009 0.0000 0.0000 0.0000 0
35.00 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

 

Damper faults were processed by applying the algorithm to data that simulated the outdoor-air 
damper being stuck at different positions.  The results of these tests are shown in Table 3.36.  The 
approach successfully classified the damper faults with high classification probability estimates.   

Table 3.36 Results of applying the fault diagnostics approach to stuck damper fault data. 

Toa 
(°C) P(0|R’) P(1|R’) P(2|R’) P(3|R’) P(4|R’) P(5|R’) Fault

Class
0 0.0782 0.9218 0.0000 0.0000 0.0000 0.0000 1
10 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1
30 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1
50 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1
70 0.0000 0.9999 0.0001 0.0000 0.0000 0.0000 1
90 0.0000 0.9706 0.0294 0.0000 0.0000 0.0000 1

100 0.0915 0.9085 0.0000 0.0000 0.0000 0.0000 1
 

3.4.5. Impact of faults on system performance for AFDD demonstration RTU 

The impact of individual faults on capacity and energy efficiency were evaluated for a range of 
operating conditions for the RTU unit tested at the Herrick Laboratories.  To evaluate the impacts of 
faults on performance, capacity and COP ratio were determined. Figure 3.84 shows the impact of 
improper refrigerant charge on capacity and energy efficiency.  When the refrigerant was charged less 
than 70%, capacity was significantly decreased. This is because the TXV becomes fully open at low 
charge levels and then the system acts like a system having an FXO as an expansion device. The COP 
ratio has the same trend as the capacity.  The extreme undercharge of refrigerant by 50% reduced cooling 
capacity and energy efficiency by 60%.  



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

136 

 

 

Figure 3.84 Capacity and COP ratio based on different refrigerant charge levels. 

 

Figure 3.85 presents the impact of heat exchanger fouling on performance. Evaporator fouling was 
simulated using reduction of air flow rate. The results show the impact of evaporator fouling on capacity 
and COP increases dramatically below about 50% of normal air flow rate. The results also show that 
capacity is more strongly influenced by evaporator fouling than efficiency. The condenser fouling test 
was simulated by blocking the area of the heat exchanger. For condenser fouling, the result shows that 
efficiency is more strongly influenced than capacity.  

 

 

Figure 3.85 Capacity and COP ratio based on the different fouling level. 
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3.4.6. Develop user interface for initial diagnostic demonstration  

3.4.6.1. Initial diagnostic demonstration  

Initial video demonstrations have been developed for RTU diagnostics.  The refrigerant charge and 
condenser air flow display interface shows the virtual gauge readings to users, as depicted in Figure 3.86.  
The capacity and COP impacts are also displayed within the interface. The VRC and VAF sensors only 
require six temperature inputs: evaporating, condensing suction line, liquid line, condenser air inlet and 
condenser air outlet temperature. The data acquisition device provides input channels for the six 
temperature sensors (e.g., thermocouples) and provides calibrated measurements as inputs to the steady-
state detector and virtual sensor algorithms.  

For demonstration, 75% refrigerant was charged in the RTU system using a scale to simulate the 
undercharged condition. The outdoor heat exchanger had no blockage, as shown in the left side of Figure 
3.88. Figure 3.86shows the gauge readings displayed within the user interface correctly indicate a 75% 
refrigerant charge level and 100% condenser air flow rate (0% condenser fouling).  The capacity and COP 
ratio indicate 95% and 96% of normal performance for the current operation.  The results demonstrate 
that the impact of refrigerant charge on performance is relatively small for 75 % of the rated charge at this 
operating condition.  However, there was a dramatic reduction in both cooling capacity and energy 
efficiency when charge was decreased below 70% refrigerant charge, shown in Figure 3.84. 

 

Figure 3.86 75% refrigerant charge level & 0% condenser fouling level demonstration 

 

The system was recharged to 100% of the nominal charge level by weighing the change in mass of a 
refrigerant canister.  For this situation, Figure 3.87 shows that the VRC and VAF sensor gauges indicated 
100%, respectively.   Both capacity and COP ratio were increased to 98 % of the expected values.  

Condenser fouling was simulated by blocking the bottom part of the heat exchanger with paper strips.  
Figure 3.88 shows an example of simulated condenser fouling with a fault level of 50% (shown on the 
right side).  The fault level is defined as the percentage of blocked heat exchanger face area. For 70% 
blockage, Figure 3.89 shows that the VAF sensor indicated a condenser air flow rate that was 63% of the 
normal value.  A condenser fouling fault could be detected by comparing this estimated air flow rate with 
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a target value. As the severity of the condenser fouling increases, the estimated air flow rate decreases 
relative to the target value. The VRC sensor made accurate prediction of refrigerant charge amount even 
when the outdoor heat exchanger was blocked. 

 

 

Figure 3.87  100% refrigerant charge level & 0% condenser fouling level demonstration 

 

 

Figure 3.88 Condenser status of RTU system (left side: normal & right side: 50% blocking) 
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Figure 3.89  100% refrigerant charge level & 70% condenser fouling level demonstration 

 

3.4.6.2. Development of complete AFDD RTU implementation and 
demonstration  

This section presents the interface for a complete implementation and demonstration of an AFDD 
system applied to RTUs. The implementation incorporates integrated virtual sensors to provide the 
diagnostic outputs and the performance impact of the fault(s). The AFDD RTU demonstration system 
provides the following diagnostic outputs:  1) loss of compressor performance, 2) low or high refrigerant 
charge, 3) fouled condenser or evaporator filter, 4) faulty expansion device or liquid-line restriction, and 
5) economizer faults.   

Once faults are detected and the causes of the faults are identified, proper action should follow to fix 
the problems, adapt the control, or flag them for continued monitoring. An assessment of the severity of a 
fault is essential to the decision process and virtual sensors can be used as inputs to this analysis.  If 
thresholds were set too close to normal conditions, the AFDD system would be too sensitive leading to 
false alarms. If thresholds were set too far from normal conditions, the AFDD system might miss faults 
that significantly reduce system performance. Therefore, it is very important to define reasonable 
thresholds for appropriate fault detection.  

Health and economic status reports for equipment can be generated using fault impact indices, such as 
system cooling capacity and efficiency (COP).  In particular, the fault impact indices can be used to 
assess the economics associated with servicing a unit if faults existed.  

Figure 3.90 shows the diagnostic demonstration interface based on using UTRC field data for no fault 
conditions. The user interface for the AFDD system incorporates 1) the status of compressors and fans, 2) 
integrated virtual sensors, 3) performance indices, and 4) information about FDD status. The status of 
fans and compressors are displayed on the left side.  If steady-state conditions are detected, shown on the 
middle of the left side, the virtual sensors will indicate their detected values. Virtual sensors were 
implemented for the compressor, TXV, condenser and evaporator fan/motor combinations, heat 
exchangers, refrigerant charge, and economizer. On the right side, the system performance is also 
displayed to show the capacity and COP ratios. The capacity and COP ratios are 91% and 94% of the 
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normal condition for this example. Based on the readings, the diagnostic outputs indicated the status of 
RTU system is acceptable and any service is unnecessary at the bottom of right side.  

Figure 3.91 shows a screen that is displayed by clicking the VRC sensor button.  The current and 
recent trending of refrigerant charge levels are shown. In addition, probability distributions are shown that 
correspond to the current estimations from the VRC sensor and expected values for a normal condition. 
The mean and standard deviation for the current distribution is also presented. The difference between 
current and expected values is used as a residual input to a Bayesian classifier in order to evaluate 
whether a refrigerant fault is present. For the no fault test data, there is a significant overlap between the 
current and expected probability distributions indicating normal operation. 

Figure 3.92 shows the diagnostic demonstration displayed on the user interface using UTRC 70% 
refrigerant charge field test data. The demonstration AFDD system recommends that service is needed for 
this refrigerant undercharge fault (bottom right side of display). For this case, the capacity and COP ratio 
were reduced to 82% and 86% due to the low charge.  Figure 3.93 shows detailed refrigerant charge 
information obtained by clicking the VRC sensor button. The probability graph shows much larger 
differences between the current estimated refrigerant charge and expected values. The trending graph 
provides more evidence for the existence of this fault.  

 

Figure 3.90 Implementation and demonstration of an automated FDD system for RTU under normal 
condition 
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Figure 3.91 Implementation and demonstration of VRC sensor under normal condition 

 

 

Figure 3.92 Implementation and demonstration of an automated FDD system for RTU under normal 
condition 
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Figure 3.93 Implementation and demonstration of VRC sensor under normal condition 

3.5.   AFDD for Building 101 DX systems  

3.5.1. System descriptions of Building 101 DX/AHU systems 

AFDD was applied to data obtained for the condensing units associated with the DX cooling systems 
at Building 101.  Table 3.37 shows the system specification for DX systems 2 and 3 at Building 101. The 
systems have two circuits with two semi-hermetic compressors and two TXVs as expansion device. Each 
of the two compressors is connected to a separate condenser.   

Table 3.37 System specification of DX system 2 & 3 

Nominal 
Capacity Refrigerant Expansion 

Type 
Compressor 

Type 
Outdoor coil 
airflow rate 

Total  Power 
of system  

Outdoor fan 
Power 

[Mbtu]  -  - - [CFM] [kW] [kW]

738  R22 TXV Semi- Hermetic 
(3 stage) 36800 64.1 

6.0
( 1.5 kW 

/ea)
 

3.5.2. Virtual sensors developments/assessments for Building 101 DX systems  

3.5.2.1. Virtual sensors developments for Building 101 DX system 2 and 3 

Data for the building 101 DX systems were obtained from continuous monitoring and virtual sensors 
were developed.  First, a VRC sensor was developed for DX system using data filtered using a steady-
state detector. Measured data for condensing DX System 3A and 3B in building 101 were used to 
evaluate robustness of the VRC sensor. Figure 3.94 and Figure 3.95 show the sample outputs of the VRC 
sensor based on use of default parameters. Due to the limitation of changing refrigerant for a public 
system, it was not possible to apply the algorithm with tuned parameters. The outdoor temperature during 
this period ranged between 86 and 93 °F.  Under this range of outdoor temperatures, the VRC sensor gave 
charge level predictions that varied by less than 10%. The DX unit #3B shows relatively larger deviations 
and it is due to the fact that fans and compressor are loading and unloading. These results are typical of 
the variation encountered during the test period (May). 
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Figure 3.94 VRC sensor outputs based on default parameters for condensing unit #3A 

 

Figure 3.95 VRC sensor outputs based on default parameters for condensing unit #3A 

 

Figure 3.96 shows outputs from a VRMF sensor developed for building 101 DX system 2A.  The 
results are presented as the ratio of estimated flow rate to the mass flow rate for 3 stages operating at the 
measured operating conditions. The mass flow rate prediction was determined using heat loss estimates 
and predictions of other virtual sensors. The predicted refrigerant mass flow rates could not be compared 
with the actual measurements due to an absence of refrigerant mass flow meter data. The refrigerant mass 
flow meter was estimated to be 100% when three compressors were used and 60% when two compressors 
were used. Although it is not possible to validate the predictions, the results clearly show the overall 
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dependence on compressor staging. These estimations will be used as inputs for other fault detection (e.g., 
condenser fouling).   

 

Figure 3.96 VRMF sensor outputs based on energy balance for DX unit 2A 

 

Figure 3.97 shows outputs from a condenser VAF sensor for DX system 2 referenced to the flow for a 
single fan operating. Again, there were no direct measurements to validate the VAF sensor outputs, but 
the results show the dependence on fan staging. These outputs are useful as inputs for fault detection (e.g., 
condenser fouling).   

 

Figure 3.97 Performance of VAF sensors based on energy balance for DX unit 2A & 2B. 
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3.5.2.2. Virtual sensors assessment for Building 101 DX system 3 during 
summer season 

Although refrigerant flow measurements were not available, compressor maps were obtained from 
the compressor manufacturer in order to assess the VRMF based on an energy balance.  In order to 
assess the accuracy of the maps, predicted power from the compressor map was compared to power 
measurements and the results were within 10% regardless of number of compressor stages operating, as 
shown in Figure 3.98 and Figure 3.99 shows comparisons of the map-based flow estimates and outputs 
from the virtual refrigerant mass flow (VRMF) sensor for building 101 DX system 3.  For these plots, 
the compressor power and mass flow rate are referenced to rated values for the compressor.  The data 
were obtained from summer months and filtered for steady-state operation.  

 

 

Figure 3.98 Accuracy of predicted power based on compressor map for DX unit 3 circuit 1 
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Figure 3.99 Evaluation of VRMF sensor based on energy balance in relation to compressor map for 
DX unit 3 circuit 1 

 

The VRC sensor was also applied to steady-state summer data to evaluate consistency in predicting 
normal charge levels over a wide range of operating conditions. Figure 3.100 and Figure 3.101 show 
outputs from the VRC sensor based on default parameters for DX unit 3 for operating conditions during 
the summer where steady-state conditions were detected. The outdoor temperature during this period was 
between 70 and 100 °F. Under this range of outdoor temperatures, the VRC sensor gave charge level 
predictions that varied by less than 7% regardless of the time and cloud cover conditions. Since the charge 
level was help constant then these represent reasonable charge predictions.  Future work will involve 
adjustments of charge level and a wider range of operating conditions.  
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Figure 3.100 VRC sensor outputs based on default parameters for DX unit 3 circuit 1. 

 

Figure 3.101 VRC sensor outputs based on default parameters for DX unit 3 circuit 2.   

 

3.5.3. Initial demonstration of virtual sensor for Building 101 DX systems 

Figure 3.102 shows the performance of VRC, VRMF, and VAF sensor for DX system 1. The steady 
detector using superheat filtered out the transient data which shows large deviation of predictions. When 
the steady detector indicates steady status, three virtual sensors consistently present 100% estimation.  
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Figure 3.102 Performance of VRC, VRMF, and VAF sensor for DX unit 1. 

 

User interface for diagnostic demonstration of Building 101 DX system have been developed, show 
in Figure 3.103. User interface includes 1) the status of compressors and fans, 2) three virtual sensors for 
DX systems, and 3) performance indices for a DX system at building 101 that show an output of the 
impact of the fault(s) on overall performance (capacity and COP). Figure 3.103 shows the example of 
demonstration under 100% refrigerant charge level, 100% refrigerant mass flow rate and 0% condenser 
fouling.  

 

Figure 3.103 Example of demonstration for DX2A unit 
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3.6.   Conclusions 

About 60% of the total cooling requirements in the U.S. are met using a large number of relatively 
small packaged air conditioners (AC).  Furthermore, several studies have demonstrated that this type of 
equipment tends not to be well maintained and generally operates much less efficiently than originally 
intended as a result of faults.  Automated fault detection and diagnostics (FDD) has the potential for 
improving energy efficiency for packaged AC along with reducing service costs and comfort complaints.  

The impact of individual faults on capacity and energy efficiency was evaluated for air conditioners 
over a wide range of operating conditions. Based on the results of this study, refrigerant undercharging in 
the range of 25% can lead to an average reduction of 20% in cooling capacity. Furthermore, an 
undercharge of about 25% would cause an average penalty in a cost penalty of $60 per year per ton of 
rated capacity for typical electricity rates. For evaporator fouling, a reduction of air flow rate by 50% 
decreased average capacity by 14%, whereas annual cost increases by $24 per ton. For condenser fouling, 
a reduction of air flow rate by 50% decreased average capacity by 9%, whereas annual cost increased by 
$80 per ton.  

Recent FDD research on packaged AC at Purdue has focused on the use of virtual sensors as a means 
of realizing a robust and low-cost approach to monitoring, detecting, and diagnosing faults.  A virtual 
sensor estimates a quantity that would be expensive and/or difficult to measure directly. Various virtual 
sensors have been developed for vapor compression equipment. Virtual sensors can be embedded in a 
permanently installed control or monitoring system and used for early detection and diagnosis of faults. 
Existing data and laboratory tests were used to develop a FDD demonstration for refrigerant and air-side 
faults, including faulty economizer operation, heat exchanger fouling, and faulty refrigerant charge. A 
number of virtual sensors have been developed using RTU test data to enable a demonstration of 
diagnostics systems for RTUs.  The RTU virtual sensors were shown to provide predictions that are 
within 10% of direct measurements. Some initial video demonstrations have been developed for RTU 
diagnostics.  

In addition, a complete implementation for an FDD system has been developed and connected to data 
obtained from an RTU monitored in the field. The user interface incorporates integrated virtual sensors to 
provide diagnostic outputs and performance impacts of the fault(s). The diagnostic outputs include:  1) 
loss of compressor performance, 2) low or high refrigerant charge, 3) fouled condenser or evaporator 
filter, 4) faulty expansion device or liquid-line restriction, and 5) economizer faults.  Health and economic 
status reports for equipment are generated using fault impact indices that measure degradation in system 
cooling capacity and efficiency (COP).   More detailed fault information is provided that includes the 
probabilities for the existence of different faults and trending of fault indices.  This data is thought to be 
useful in building confidence in the FDD system outputs by users.   

VRC, VRMF, and VAF sensors for three DX systems at Building 101 have been developed and 
demonstrated using data from Building 101.  Although it was not possible to fully validate these sensors, 
the outputs did demonstrate the proper dependence on compressor and fan staging and did not deviate 
from normal behavior during the course of the evaluation.  
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3.7.   Future Studies  

More extensive testing of the 4-ton RTU system at the Herrick Laboratories will be performed to 
provide a complete evaluation of the demonstration FDD system under a wide range of fault and 
operating conditions. A more complete video demonstration will be developed that illustrates all of the 
important features of the FDD system that includes performance impacts and service recommendations.  
The testing will include multiple-simultaneous fault implementation. 
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4. AHU-VAV Fault Diagnosis 

 4.1 Introduction 

With the advent of more advanced building control systems, and the continuous reduction of sensor 
costs, there is a burgeoning opportunity to implement systems for early and effective detection and 
diagnosis of faults.  Presently, faults in AHUs are most commonly identified through occupant complaints.  
As a result, only faults resulting in system not adequately conditioning the space will be detected.  This 
leads to many energy-wasting faults persisting in an AHU-VAV system perpetually or for extended 
periods of time.  AFDD for HVAC applications has been an active area of research for more than two 
decades, but yet there remains a lack of reliable, affordable, and scalable solutions for AHUs. 

During BP2, the Drexel team worked to complete three deliverables in the effort to advance AFDD 
for AHUs toward widespread commercialization.  Briefly, these three areas can be summarized as follows: 

1. Completion of the Dynamic Fault Simulation Testbed for AHU-VAV systems; 
2. Development and demonstration of the Pattern Matching Principle Component Analysis (PMPCA) 

fault detection method; 
3. Investigation of fault incidence and associated energy impacts via engagement with local industry 

and experimental data. 

The first deliverable, the fault simulation testbed, allows for the simulation of 51 discrete faults 
during any seasonal operating condition specified by the user.  Additionally, the severities of these 51 
faults can be adjusted as desired by the user, resulting in many more faults than could be tested 
experimentally.  This testbed can now be used for comparison and analysis of AFDD strategies for this 
EEB HUB project. This allows researchers to identify the most effective AFDD methods as well as 
individual strengths and weaknesses of the methods.  Additionally, this testbed is being shared with other 
researchers as part of a “beta test”, in which it can help progress the research in this field beyond solely 
the scope of the HUB. 

For the second task, Drexel’s team was able to successfully demonstrate the efficacy of a novel fault 
detection method.  This data-driven method that was shown to detect approximately 90% of the AHU 
faults studied, with an overall false-alarm rate of less than 1%.  It is a purely machine-learning method 
requiring only fault-free training data, and with no requirement for customization for different AHU 
applications.  These factors, combined with the high detection and low false-alarm rates, sets this AFDD 
technique apart from other methods recently proposed in the literature. 

The third item, an investigation of the energy implications of AHU faults, combines analysis of 
experimental data with interviews conducted with local industry stakeholders.  The primary intent of the 
interviews was to gain further insight into fault occurrence probabilities, as they are observed in the field.  
This type of information is essential for prioritizing the efforts of AHU diagnostic research, and also 
allows for increased accuracy when estimating the energy impacts and economic benefits of AFDD for 
AHUs.  Beyond this primary goal of informing our fault incidence estimates, the interview process also 
provided feedback from industry regarding their needs and desires for effective AFDD.  It is believed that 
this interaction will aid in the alignment of the research with industry needs, resulting in a method that 
can be readily commercialized. 

The work performed by the Drexel team during BP2 is summarized in the following document.  
Below, a brief overview of the existing state of the industry and current research is provided for 
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background.  This is followed by individual sections detailing the each of the three objectives described 
above.  Each of these sections provides an overview of the goals and the methodology employed to 
achieve these goals, followed by a discussion of the results obtained and any relevant conclusions. 

4.2. Background and Brief Review of Relevant Literature 

Over the past couple of decades, significant research efforts have been undertaken to address the need 
for reliable AFDD for building HVAC systems.  The research can be grouped into three broad categories 
of approaches: (1) physical modeling methods, (2) rule-based methods, and (3) data-driven methods (a 
good overview is provided by Katipamula et al., 2005a and 2005b).  Additionally, a number of 
approaches have utilized hybrids of these method categories.   

While a number of the different methods have made important progress, the lack of widespread 
industry adoption of AFDD for AHUs is indicative of certain drawbacks or limitations found in each of 
the existing methods.  These limitations are often related to the time and costs required to customize or 
tune a system so that it can operate effectively in each building in which it will be employed. 

This review includes a review of AHU AFDD methods and the literature related to the energy 
impacts of faults.  

AFDD for AHU-VAV: Pattern Matching PCA Method 

For the sake of brevity, this section includes a discussion of only the most recent advances in AFDD, 
with a focus on the most promising approaches for commercialization.  It is organized with brief 
discussions of current trends and recent advances spanning the following topics: 

 General AFDD techniques across various fields 

 AFDD techniques for non-AHU HVAC applications 

 AFDD methods for AHU applications 

 PCA for non-AHU HVAC applications 

 PCA for AHU AFDD applications 

4.2.1.1. General AFDD Overview 

Of the three general categories of AFDD methods, model-based methods are one of the most common 
approaches.  Model-based methods, as the name implies, require some model of the system in question 
for analysis.  This method has proven to be effective for self-contained factory-built HVAC systems, but 
it is often inefficient for built-up systems due to the impracticality of creating a new model for every 
building. 

A derivative of the model-based system is a rule-based method founded in a priori knowledge of the 
dynamics of the system.  These types of systems are typically derived from expert knowledge, in a 
troubleshooting method similar to how a technician would analyze the data, using a series of if-then type 
statements.  Recently, these rule-based type systems have been combined with active diagnostic methods 
that alter a system’s performance to gather more information, with relatively good success. 

The third category of methods pertains to data driven models.  These methods are typically divided 
into two different categories, black-box models and grey-box models.  The difference between these two 
types of models is defined by if the model parameters utilized define a physical function of the system or 
not.  Black-box type models include methods like multiple linear regression, artificial neural networks, 
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and fuzzy logic.  In a grey-box model, the parameters are determined based upon system variables, and 
may require a priori knowledge to be incorporated.  

The method presented in this paper is a data-driven method, which utilizes a principal component 
analysis (PCA) based detection method in the algorithm.  PCA and Partial Least Squares (PLS) methods 
are among the most basic, and common statistical methods used for fault detection.   

However, complex industrial processes operating under multiple operating conditions often invalidate 
the underlying assumptions of PCA and PLS techniques. Some assumptions inherent in when using PCA 
include linearity, and that the operating data follow a unimodal Gaussian distribution.  To address this 
shortcoming in other industries with similar issues, clustering techniques have been suggested like 
Gaussian Mixture Models (GMM) (Yu and Quin, 2008), PCA-based GMM (Yu, 2011), and Hidden 
Markov Models (Lee et al., 2010).   

Clustering is more effective in processes with fewer operational conditions than HVAC processes.  
The difficulty often encountered when using the classifier-type methods for HVAC applications results 
from the vast number of unique operating conditions experienced during building operation.  During the 
learning process of these clustering methods, it is difficult to adequately define all of the states or 
operating conditions that the system will experience.  The data is typically clustered into too few states for 
adequate fault detection.   

Additionally, the use of these types of methods for fault diagnosis typically requires faulty training 
data that is not usually available for individual systems.  The method presented in this paper attempts to 
overcome the non-Gaussian and non-linear operation of AHUs through the use of a pattern matching 
method.  This method carefully selects the data used to train each PCA model in a manner that 
approximates a linear and Gaussian process. 

4.2.1.2.  AFDD for HVAC Applications 

The HVAC field, as a whole, has experienced significant advances in AFDD over the past couple of 
decades.  However effective fault detection for AHU-VAV systems still lags behind the progress made on 
other components of HVAC systems.  Primary systems, like boilers and chillers, as well as packaged 
units, have the advantage of being able to be tested by the manufacturer in order to set tolerances and 
thresholds for fault detection and diagnosis. 

In a recent analysis of data-driven AFDD methods for a primary system, Reddy (2007) analyzed four 
proposed chiller AFDD methods: model-free fault detection with a diagnosis table, a multiple linear 
regression model with diagnosis table, Principle Component Analysis (PCA) model with diagnosis table, 
and a linear discriminate and classification approach.  The second method was identified the most 
promising chiller AFDD tool based upon a sensitivity analysis of false alarm rates. 

Li and Braun (2007a, 2007b, 2009) investigated the effects of multiple simultaneous faults for air-
conditioners and heat pumps.  They found that decoupling the effects of the faults was the key for 
accurate diagnosis.  This same strategy of decoupling was employed by Han (2011), using a support 
vector machine (SVM) approach. 

Ma and Wang (2011) proposed a fault detection method based upon tracking various performance 
indices.  Upon these indices flagging a fault, the diagnostic and control strategies are implemented using a 
rule-based method.  It is unclear whether the thresholds utilized will be effective across multiple chillers, 
or whether the thresholds will have to be customized for each chiller model or each chiller application. 
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Zhao et al. (2013) proposed a chiller fault detection strategy that attempts to simulate the diagnostic 
process that an expert would utilize to diagnose faults.  This method appears to be more robust than a 
simple rule-based method due to the incorporation of Bayesian belief network theory. 

4.2.1.3.   Literature: AFDD for AHU-VAV Systems 

The AFDD techniques utilized for AHU-VAV systems are often similar to the approaches utilized for 
other HVAC components, but often add another level of complexity to address the various operational 
modes and custom installations. 

House et al. (1999) demonstrated the application of several classification techniques for AFDD of 
seven different faults in an AHU.  ANN classifiers, nearest neighbor classifiers, nearest prototype 
classifiers, a rule-based classifier, and a Bayes classifier were compared for both fault detection and fault 
diagnosis.  The Bayes classifier appeared to be a good choice for fault detection.  For fault diagnosis, 
there were not significant differences in the performance of six classifiers.  In addition, all of the 
classification methods studied as well as neural networks method required both fault-free and faulty data 
for the development of models. 

Wang and Jiang (2004) utilized CMAC neural networks to perform AFDD on the heating and cooling 
valves.  Schein et al. (2006) demonstrated the utility of a rule-based AFDD method for AHUs, using the 
NIST-developed APAR (AHU performance assessment rules) method.  This method first identifies the 
mode of system operation, then applies a set of rules accordingly.  This method was found to be able to 
effectively detect a variety of faults.  A potential drawback with this method may be some difficulty with 
setting the thresholds that trigger a fault for a variety of different AHU implementations. 

Seem and House (2007) indicated that some of the problems with extending AFDD techniques from 
the simulations and laboratory tests include unstable control, a lack of standard control sequences, and 
data handling challenges.  To combat these challenges, they recommended a novel method for integrated 
control and fault detection for AHUs.  This method is based on finite state machine sequencing logic, 
combined with the measurement of residuals.  The residuals are calculated after control logic imposes 
steady-state conditions on the system. 

Tan and Dexter (2006) use a priori knowledge of variable interactions to infer air flow rates for which 
sensors are notoriously unreliable.  Song et al. (2008) demonstrated an FDD tool for whole building 
HVAC AFDD, using a primarily rule-based method.  This method relies on thresholds that must be 
calibrated for individual buildings.  Yang et al. (2008) demonstrated a rule-based method for detecting 
faults in AHU sensors.  Some of these rules require user-defined thresholds, but many of them are simply 
based upon relative sensor measurements that would not be found under normal operation of the system. 

Fan et al. (2010) investigated AHU-VAV sensor faults, utilizing back propagation neural network 
models for fault detection and a combination of wavelet analysis with Elman neural network (a type of 
feed-forward neural network) for fault diagnosis.  The BPNN model requires training with normal 
operating condition data, and the Elman model compares cluster centers with known fault cluster centers, 
so it requires faulty data for accurate fault diagnosis. 

Wu and Sun (2011a and 2011b) proposed a method solely for fault detection, based upon unit energy 
consumption and a spatial-temporal partition strategy.  This method requires offline training of normal 
and faulty behaviors to set the thresholds for fault detection. 

Yang et al. (2011) proposed an AFDD method that utilizes fractal correlation dimension (FCD).  This 
method is employed to deal with the measurement and system noise encountered in the AHU application.  
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They performed an investigation into the input parameters for the FCD method, and demonstrated the 
increased accuracy of fault detection using the de-noised data.  Due to the time requirements of the FCD 
method, a hybrid method was proposed in Yang et al. (2013) in which FCD was combined with a direct-
residual type method. 

Some new trends in AFDD specifically with regard to AHU-VAV systems are the addition of 
proactive diagnostics and fault correction algorithms.  Pakanen and Sundquist (2003) described this 
technique as automation-assisted fault detection.  They utilized a method of artificially perturbing the 
system during normal operation, comparing with a model to generate a residual which can then be 
compared against some threshold.  As mentioned previously, the modeling effort may limit the 
commercial applicability of this specific technique, but the concept of using system perturbations to 
identify abnormal behavior was successfully demonstrated. 

Brambley et al. (2011) proposed an “active” method much nearer to commercial viability.  This 
method used a combination of training tests during commissioning to develop models of normal operation, 
passive diagnostics to detect the symptoms of faults, proactive diagnostics to diagnose the cause of the 
fault, as well as fault correction algorithms.  The fault correction algorithms were extensions of previous 
work performed at PNNL (Fernandez et al., 2009a and 2009b).  Laboratory testing found that this 
combination was able to detect, diagnose, and correct faults in most of the cases tested.  This paper also 
includes a useful list of faults that is among the most comprehensive in the literature. 

The detection methods used require a number of training algorithms to create thresholds for the 
passive fault detection process.  These thresholds are generated by running the system through a variety 
of operating conditions, and tracking the interactions of different variables.  The diagnostic methods used 
are rule-based methods requiring a priori knowledge of the physics of the system.  The algorithms were 
able to correctly diagnose all of the faults tested in the study.  There was no discussion of how varying 
weather conditions and building loads affect the training, or the results. 

Najafi et al. (2012) proposed a machine learning approach that utilizes a Bayesian framework that 
results in a probabilistic output.  This type of output has significant benefit, especially with regard to the 
decision-making process that follows the fault detection process. A potential difficulty with this method is 
the requirement to estimate prior probabilities of faults.  Additionally, this method requires fault 
signatures, described as hypothetical fault behavioral patterns, and it is unclear if these are applicable 
across many different AHU applications. 

Wang et al. (2011) investigated terminal unit faults utilizing autoregressive time-series models to 
predict the measured variables, and cumulative sum control charts to detect and a rule-based fault 
classifier to diagnose faults. 

Wang et al. (2012a and 2012b) use a combination of model-based and rule-based techniques to 
perform AFDD for AHUs.  The innovative part of this method is the genetic algorithm-based 
optimization method that reduces the residual between the actual and predicted values as the system 
operates.  The drawback to this method is that, due to its continuously-adaptive nature, it is only effective 
for detecting abrupt faults and cannot detect degradation faults. 

Zhu et al. (2012) demonstrated AHU sensor fault detection using a neural network technique 
preprocessed with wavelet transform and fractal methods.  The wavelet and fractal methods analyze the 
original data and determine the complexity of the data, and the neural network is used for fault detection. 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

156 

 

4.2.1.4. Principal Component Analysis Literature 

In this paper, principal component analysis (PCA), is used to transform a number of related process 
variables to a smaller set of uncorrelated variables.  PCA serves as the most fundamental multivariate 
statistical process monitoring (MSPS) method, and is proven to be effective for reducing the 
dimensionality of a large feature space.  Kourti (2004) provided a good overview of the PCA method. 

There are numerous variations or extensions of the PCA method that have been utilized for fault 
detection algorithms.  Some example of this include multi-block PCA, in which a large data matrix is 
divided into smaller blocks (Qin et al., 2001, Smilde et al., 2001, Du and Jin 2007a, 2007b, and 2007c), 
dynamic PCA in which a time-series relationship can be incorporated into the conventional PCA analysis 
(Ku et al., 1995), kernal PCA in which input vectors are mapped into a high-dimensional feature space 
via a kernel function (Yoo et al., 2006), provided a useful demonstration of this type of method, recursive 
PCA, in which the model is recursively updated based upon different criterion (Li et al., 2000), and 
multi-scale PCA, incorporating wavelet transforms (Bakshi, 1998 and Hwang and Han, 1999), among 
many others. 

Ralston et al., 2004 proposed a technique that uses confidence limits on the residuals of each 
individual variable, rather than the overall residual.  Sun et al. (2005) utilized a PCA-based method for 
boiler leak fault detection.  This method uses an s-term sum method for data pre-processing and a moving 
cumulative alarm method to reduce the false alarms typically associated with the use of Hotelling’s T2 
and SPE metrics for fault detection. 

The increasing popularity of the use PCA methods for fault detection has resulted in many multiple 
applications being proposed for HVAC fault detection.  This section provides a summary of the PCA-
based methods recently proposed for HVAC components, excluding the AHU-VAV components.  The 
following section will delve into the PCA-based methods proposed for AHU-VAV systems. 

Wang and Chen (2004) demonstrated a PCA-based AFDD method for central chilling systems.  This 
paper focused on the sensors, and utilized the unreconstructed variance method for creating the PCA 
models.  Wang and Qin (2005) used both the T2 and SPE thresholds for detecting VAV sensor faults, and 
isolated the fault using the contribution plot method.  This method uses the VRE method for creating the 
PCA models. 

Xu et al. (2008) developed an enhanced sensor AFDD strategy for centrifugal chillers using wavelet 
analysis method and PCA method.  Processing measurements of sensors without pre-treatment may 
deteriorate the performance of sensor AFDD strategy using PCA because of the embodied noises and 
dynamics.  Wavelet analysis can extract the approximations of sensor measurements by separating noise 
and dynamics. 

Chen and Lan (2009) used a PCA-based method for fault detection of condenser fouling in an air-
source heat pump.  They were able to successfully demonstrate fault detection for a single, steady-state 
mode of operation.  The variance of reconstruction error (VRE) method was used to create the PCA 
model, and the SPE threshold was used for fault detection.  There was no discussion of overall detection 
rates or false alarm rates. 

Chen and Lan (2010) used a PCA-based method for detecting sensor faults in building billing systems.  
They were able to successfully demonstrate fault detection using unreconstructed variance (UCV, similar 
to VRE) to create the PCA model and the SPE threshold was used for fault detection.  Fault diagnosis was 
performed by reconstructing the data until it is not faulty, and isolating the fault “direction”. Temperature 
sensor faults were diagnosed successfully, while flowrate sensor faults would require additional 
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diagnostic techniques.  This testing was limited to steady-state operational conditions during the summer, 
and required only three days of training data.  The fault detection limit for this process was reported as 
1°C.  There was no discussion of overall detection rates or false alarm rates. 

Hu et al. (2012) utilized an adaptive PCA method for chiller FDD, in which the samples of the 
training data that exceed the SPE fault detection threshold are recursively removed.  This paper stipulates 
that the rows of data, or samples, which are removed, are not healthy and contain useless or erroneous 
data.  Wang et al. (2012) used PCA to reconstruct sensor faults and recalibrate sensors with bias. 

PCA method has been widely used for AFDD in many fields, and there has recently been significant 
growth of interest in the use of PCA for AHU-VAV diagnostics.  Some of the key difficulties with 
applying PCA methods in HVAC area lies in the fact that HVAC systems are highly nonlinear and greatly 
affected by outdoor and indoor conditions, such as weather conditions and internal load changes. 

Wang and Xiao (2004) proposed a PCA-based scheme for AHU sensor fault diagnosis.  In this 
scheme, faults are detected using the Q-statistic or squared prediction error (SPE).  For the diagnostic 
stage, the faults are isolated through a combination of contribution plots and expert rules. 

Qin and Wang (2005) proposed a hybrid method for AHU-VAV AFDD.  This method utilizes 
different techniques for detecting different faults.  Some faults are detected using a rule-based method, 
some by monitoring performance indices (based on system models), and others through the use of 
statistical process control models.  These models utilize PCA, and are applied for the detection of terminal 
unit sensor flow biases.  It utilizes a multi-block PCA method that separates the AHU from the terminal 
units, and also uses the PCA method to reconstruct and correct the sensor biases. 

Wang and Fu (2006) presented an AFDD strategy for a typical AHU to detect degradation sensor 
faults.  A condition-based adaptive scheme was used to update the PCA model to follow the normal shifts 
in the AHU process due to changing operating conditions, where the outdoor air temperature and 
humidity were selected to represent the changing operating conditions. 

Du and Jin (2007a, 2007b, 2007c, 2009) used a PCA-based method to perform fault detection for 
AHU-VAV systems.  All of the papers were very similar, and they utilized the same method for all cases, 
but used different variables to build the models to detect different faults, in a manner similar to the multi-
block PCA method used by Qin et al. (2001).  They reported successful results using PCA for fault 
detection, and by combining PCA with joint-angle-analysis (JAA) and expert rules for diagnosis.  The use 
of JAA requires a fault signature library against which to compare the faults, and there is no discussion of 
whether this library can be generalized across different AHU-VAV systems.  There was no indication 
given as to how they constructed the PCA models with regard to PC retention, and no overall detection or 
false-alarm rates were provided for any of the papers.  All of their demonstrations were carried out using 
an AHU-VAV fault simulator.  Also, a number of the sensors utilized in their analysis are not typically 
installed in AHU-VAV systems. 

AHU Fault Energy Impact Literature 

There is very limited information in the literature relating to the energy impacts of faults for HVAC 
and AHU-VAV systems.  Energy impacts of faults are a function of multiple factors: 

 The difference of energy consumed when comparing operation of the AHU-VAV system 
with the fault versus fault-free operation (can be positive or negative) 

 The probability of the fault occurring 
 The probability of the fault going undetected without an effective AFDD procedure in place 
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Lee and Yik (2010) investigated the energy implications of air-side faults in AHU-VAV systems.  
Ginestat et al. (2008) investigated the energy consumption impacts of AHU-VAV faults, but also 
incorporated an analysis of the impact of faults on indoor air quality (IAQ). Kwok et al. (2004) 
investigated failure rates of various HVAC components for the purpose of creating an optimal 
preventative maintenance model for office buildings.  Qin and Wang (2005) performed a case-study in 
concert with designing an AFDD method, which resulted in some published data on fault occurrences for 
an AHU-VAV system.   

Beyond these few papers, there is limited data on fault energy impacts on AHUs that is publicly 
available.  A more detailed discussion of the findings mentioned here is included in Section 4.8, when the 
data from the literature are compared to the results obtained in this study. 

4.3.  Dynamic AHU-VAV Fault Simulation Testbed 

Testbed Overview and Functionality  

Despite the importance of the AHU-VAV systems and the AFDD strategy development, only limited 
experimental studies under restrictive scopes were available to evaluate AHU AFDD methods (Norford, 
et al, 2000, Carling 2002, and Castro et al, 2003).  A dynamic AHU-VAV simulation model that is 
capable of producing fault free and faulty operation data for commonly used AHU configurations, and 
control and operation strategies is thus needed.  Moreover, developed dynamic AHU simulation models 
need to be systematically validated with experimental data for both fault free and faulty operation before 
any credibility can be given to the prediction accuracy and usefulness.   

In a recently completed ASHRAE project (Wen and Li, 2010), a virtual dynamic AHU-VAV testbed 
(referred to as the ASHRAE 1312 testbed hereafter) representing a small four-zone commercial building 
that is equipped with a single duct AHU-VAV system is developed.  In this testbed, common AHU faults 
with various fault severities, are modeled.  Both the fault free and fault system models are extensively 
validated using experimental data generated from a real small commercial building.   

However, the ASHRAE 1312 testbed does not have fault models for the VAV terminal units.  
Therefore, in this project, the ASHRAE 1312 testbed is extended to include typical faults for a VAV 
terminal unit.  Moreover, existing experimental data from a NIST project (NIST 6964, Castro et al. 2003) 
are used for the validation of the VAV terminal unit fault models.  The ASHRAE 1312 user interface is 
also further developed to be more user-friendly and to include the VAV terminal unit faults selection. 

In this section, the following perspectives are discussed:  

1. Identifying common VAV terminal unit faults and their severities; 
2. Extend an existing four zone AHU-VAV system model (Wen and Li 2010), so that it can produce 

faulty operational data from its VAV terminal units; 
3. Identifying and collecting existing experimental data to validate the fault models developed for 

the VAV terminal unit model; 

VAV Fault Model Development and Available Data 

VAV terminal unit faults 

Using a manner that is similar to that reported in the ASRHAE 1312 project (Wen and Li 2010), 
potential VAV terminal unit faults are identified.  As listed in Table 4.1, the VAV terminal unit faults can 
be categorized as controlled device fault, controller fault, equipment fault and sensor fault. The controlled 
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device fault, like damper stuck, reheat valve stuck, is modeled by fixing the damper or valve position at 
certain stuck positions. In controller fault category, the controller unstable fault was modeled and 
simulated, by decreasing proportional band.  The equipment fault, like reheat coil fouling, was modeled 
by changed the thermal and hydraulics properties.    

Table 4.1 VAV terminal unit fault summary 

NO. Category Device Type of Fault Simulation
1 

Sensor  

Temperature sensor   
Bias signal Y

2 Drift signal Y
3 Randomly varying N
4 

 CFM sensor   
Bias signal Y

5 Drift signal Y
6 Randomly varying N
7 

Controlled 
Device 

VAV damper 
Stuck 

Fully open Y
8 Fully closed Y
9 Partially open N
10 Leaking   Y
11 

Valve of Reheating 
Coil 

Stuck 
Fully open Y

12 Fully closed Y
13 Partially open N
14 Leakage   Y
15 Flow block   N
16 Valve Size Improperly N
17 

Controller 
VAV Damper 

No signal   N
18 Unstable Y
19 

Software 
Improper set point N

20 Code error N
21 Reheating Coil Unstable Y
22 Reverse Action   N
23 

Equipment Reheating Coil 

Fouling (fin and tube) Y
24 Reduced capacity N
25 Leakage   Y

 

Fault modeling 

The real physical mechanism of a fault was often very complicated and that the purpose of fault 
modeling was not to replicate all detailed physical phenomena but to replicate the most significant fault 
symptoms.  And the objective of the validation process for faulty operation simulation model was to 
assure that the simulated operational data reproduce fault symptoms and fault severities. Most of the 
faults in this project are modeled similarly as in the ASHRAE 1312 which were by adding parameters or 
changing values of existing parameters. 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

160 

 

Sensor fault  
Two types of sensor faults, namely, discrete fault and drift fault were simulated in this project. 

Discrete faults were modeled by adding a user specified bias to the simulated sensor output, which was 
achieved by Eq.  

BiYY inputoutput     (4-1) 

where Youtput and Yinput were the output and input of a sensor model, Bi was an user specified bias which 
was kept as a constant. 

Drift faults were modeled by linearly varying a bias, which resulted in a linearly varied simulated 
sensor bias as described in Error! Reference source not found. 

TSYY inputoutput   (4-2) 

where T was the amount of time after a fault occurred, S was a user specified slope of drifting bias.   

Controlled device fault 

Controlled device category included three dampers (RA, EA, OA dampers) and two valves (heating 
and cooling valve).  Two types of faults, namely, stuck fault and leaking fault were modeled.  Damper or 
valve stuck faults were modeled by fixing the simulated controlled device position to be a user specified 
position.  Leaking faults were modeled by adding a user specified flow rate when the controlled device 
was 100% closed 
Controller fault 

Only unstable control fault was simulated in this project, which was modeled by implementing a user 
specified proportional band for the PID controller. 

Equipment fault 

Two types of reheat coil fouling faults were simulated in this project, namely, air side fouling fault 
and water side fouling fault.  In order to simulate the air side fouling faults the values of thermal 
conductivity of coil was deceased and the values of air flow resistance was increased. For the water side 
fouling faults the values of thermal conductivity of coil and water flow resistance were increased to 
imitate the fault symptom (House, Lee et al. 1999).  

Available experimental data from NIST 6964 

There are very limited experimental data available from the literature that focus on VAV terminal unit 
faults.  The only experiment data that can be used to validate the VAV terminal unit fault models are from 
the NIST project (NISTIR 6964, Castro et al. 2003).  The NIST 6964 experiment were performed at the 
Iowa Energy Center Energy Resource Station (ERS) in a similar manner as that reported in the ASHRAE 
1312 experiments.  More detailed information about the ERS test facility is provided in Section 4.6 and 
by Wen and Li, 2010.  During the experiment, the VAV terminal unit faults were implemented in the A 
system of the test facility and the B system (which is completely identical to the A system with similar 
building loads) was served as the baseline fault free system.  Three VAV faults were implemented 
artificially as described in the following section: 

Hydronic Reheat Coil Valve Stuck Partially Open 

By applying a control voltage from an independent source to the hydronic coil valve actuator in the 
West-A test room, the reheat coil valve was artificially stuck at certain positions.  

Hydronic Reheat Valve Leakage  
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The fault was implemented by manually adjusting the reheat valve so that it did not close completely. 

Failed Differential Pressure Sensor  

The sensor was disconnected from the controller.  This fault is not modeled in our testbed because 
this fault is often monitored by existing building control systems.   

Model Validation 

Validation process 

For the two faults which have experiment data from the NIST 6964 project, the simulated results 
from newly developed fault model are compared with the experiment data to validate the simulated 
symptoms of those faults. For those faults without experiment data, the simulated fault results are 
compared with the simulated fault free results to analyze the fault symptoms.  

VAV terminal unit reheat coil valve stuck open fault 

Depending on the room condition, the reheat valve stuck open fault, generally yields more cooling 
load for the AHU to remove, especially in the summer.  In this case, the discharge airflow rate increases 
to compensate the excess cooling load. Figure 4.1a shows the discharge airflow rate simulated from the 
testbed under fault-free and faulty conditions. The simulated discharge airflow rate when the fault exists 
is nearly two times of that under fault free conditions. The same fault symptom is reported in NISTIR 
6964 (as shown in Error! Reference source not found.4.1b). 

 

 
 a) Simulation results b) Experimental data from NIST 6964 

Figure 4.1 VAV terminal unit reheat coil stuck open valve fault 

 

VAV terminal unit reheat coil valve leaking fault 

Similar to that in the NIST 6964 project, a 10% leakage fault is simulated using the testbed. The fault 
causes an additional heat into the discharge air, which increases the discharge air temperature.  Because 
discharge air temperature is not reported by the NIST project, this fault symptom is not compared with the 
experimental data here. In order to remove the same cooling load for the room, more discharge air is 
therefore needed. Figure 4.2 a and b demonstrate that the increased discharge air flow rate fault symptom 
is observed from both the testbed and the experimental data.   
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 a) Simulation results b) Experimental data from NIST 6964 

Figure 4.2  VAV terminal unit reheat coil valve 10% leaking fault 

Other Modeled Faults  

Other VAV terminal faults, such as VAV damper leaking, zone temperature sensor bias, zone airflow 
sensor bias, reheat coil fouling, VAV damper controller unstable, and reheat coil valve controller unstable 
faults, are also modeled in the testbed.  Due to the lack of experiment data, the simulation results are only 
examined qualitatively.  Both the fault free and faulty operation data are simulated using the testbed for 
each fault under the same weather condition (a summer weather condition).  The fault symptoms are 
summarized by comparing the fault free and faulty operational data.  This part of the results is 
summarized in Appendix 2.   

4.4. Fault Detection Using the Pattern Matching PCA (PMPCA) Method 

AHUs for “built up” or custom designed systems, pose a number of unique challenges to the typical 
fault detection paradigm. Model-based or heuristic methods are some of the most common techniques for 
performing AFDD, but these are not feasible for AHU applications.  Since the design and implementation 
varies greatly from building to building, it is not cost-effective to create detailed models or perform 
extensive training.   

Another complication when designing AFDD for AHUs results from the fact that building systems 
operate in nearly continuously transient states.  During the course of the day, the system must compensate 
for the continuously varying weather and building loads.  AFDD methods must be adaptable to function 
accurately regardless of the operational mode of the system.  The non-linear manner in which the system 
moves through these different operational modes adds another layer of difficulty. 

 Additionally, the architecture of sensor networks in air handling units is not designed for diagnostic 
purposes.  Constrained by cost, operational requirements, and practical considerations, many process 
variables that could facilitate AFDD are not typically measured.  Figure 4.3 identifies a typical sensor 
system layout for an air handling unit. 
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Figure 4.3 AHU schematic 
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The pattern matching PCA method proposed here overcomes the aforementioned difficulties by 
comparing current operational data with known fault-free data of the same operational conditions.  By 
isolating only the most similar operating conditions for comparison, this method is able to overcome the 
non-linear and non-Gaussian constraints of AHU operational data. 

The development and testing of an AFDD method for building HVAC systems should adhere to a 
minimum set of requirements, such that it will be practical for extension into industry.  The objective is to 
create a practical AFDD protocol that: 

 Can be implemented solely with historical fault-free data, and does not require data from faulty 
operation for training; 

 Is efficient enough to be implemented for online monitoring; 

 Is robust enough to handle all possible operating conditions; 

 Can detect both degradation and abrupt type faults; 

 Can detect both process faults as well as sensor faults; 

 Has a very low false alarm rate, with a goal of less than 1% 

The PMPCA method proposed meets all of these requirements, and overcomes many of the 
shortcomings of previously proposed methods that limit their ability for widespread commercial 
application.  This section outlines the PMPCA method, starting by explaining the theory behind the 
pattern matching method and the PCA method for fault detection.  The combination of pattern matching 
and PCA for AHU fault detection was first suggested by Li (2009), but the first large-scale demonstration 
of this method is presented herein.  The use of this method for AHU fault detection required significant 
modification in order to consistently detect faults without false alarms, and the methods used for 
refinement are also outlined in this section. 

Method Overview 

The PMPCA method is comprised of two distinct phases: pattern matching to identify similar 
historical operating conditions that are known to be fault-free, and comparison of the online/test data with 
the historical training data using PCA-based fault detection techniques.  The theory behind each of these 
methods is presented below, followed by an overview of the refinement process that was undertaken 
during BP2.  The results of the method demonstration are presented in Section 6 of this paper. 

4.4.1  PCA Overview 

PCA is a statistical analysis method used for multivariate data when the correlation among the data is 
difficult to describe using math equations.  This applies well to AHU-VAV systems with non-linear, hard 
to model, variable interactions.  PCA rotates the coordinate axes and reduced the dimensionality of the 
variable subspace, transforming a group of correlated variables into a reduced set of variables that are 
uncorrelated or orthogonal to each other.  For details on the theory and application of PCA methods, there 
are countless books and papers that have addressed this concept including Jackson (1991), Kourti (2004), 
and Bishop (2008).  The discussion provided here addresses only the specific ways in which the PCA 
method is applied for this method. 

The PCA method maps the data into two subspaces, the principal component (PC) subspace and the 
residual subspace.  The PC subspace captures the process systemic variations, while the residual subspace 
contains some of the noise from the system, and some error information.  Both of these subspaces have 
applications for fault detection. 
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Prior to performing PCA decomposition, it is essential to pre-process the variables to make them non-
dimensional.  This requirement is primarily due to the fact that variables in the system have different units 
with different orders of magnitude.  The preprocessing normalizes all of the variables to have zero mean 
and unit variance. 

After normalization, the covariance matrix is calculated as 

ߑ ൌ
்ܺܺ
݊ െ 1

 (4-3) 

where X is the data matrix, and n is the number of process variables.  An eigenvalue decomposition is 
then performed on the covariance matrix, and the eigenvalues and corresponding eigenvectors are 
obtained.  The eigenvalues are non-negative real numbers with decreasing magnitude, i.e. λ1 > λ2 >… λn > 
0.  The variance explained by each component in the PCA model is defined in Equation 4-4. 
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And the cumulative contribution to the overall variance is defined by Equation 4-5, below. 
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The loading matrix corresponding to the first and largest eigenvalues describe the operating 
conditions of the system, while those associated with the smallest eigenvalues model the noise of the 
system and are not useful.  The selection of the cut-point for when to stop including the decreasing PCs in 
the model is an important part of the use of the PCA method, and a variety of different techniques were 
investigated during the demonstration of this method.  The details on this are presented below in Section 
4.5.2.  

Prior to presenting the details of the method, the concepts behind the pattern matching and fault 
detection are presented.  This is followed by an overview of how the methods were refined, and the 
results of the demonstration. 

4.4.2 Pattern Matching 

A number of techniques have been developed for pattern matching in time-series data (Singhal and 
Seborg, 2002; Johannesmeyer et al., 2002), and the concepts behind these methods were utilized in the 
creation of the pattern matching method proposed here.  The concept of pattern-matching is to select a 
“snapshot” of current data that is operating in steady-state, and find historical data that is sufficiently 
similar for comparison.   

This is done using a moving window through the historical data.  At different times during system 
operation, a window of time is selected and compared against all (or a subset of) historical data for 
similarity.  Figure 4.4 provides a graphical representation of the various operating modes that a system 
moves between as a function of the outdoor air temperature.  As the figure below indicates, outdoor air 
temperature is the primary driver of the different modes of operation, but the internal loads at any given 
time can vary greatly and also have a significant impact upon how the system is operating.  
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Figure 4.4 AHU operational modes 

During the course of this demonstration, three different pattern matching metrics were tested: PCA 
similarity factor, modified PCA similarity factor, and distance similarity factor. 

PCA Similarity Factor and Modified PCA Similarity Factor 

The PCA similarity factor was first proposed by Krzanowski (1979).  It creates a reduced PCA 
model and creates a PCA model for each data set.  The PCA similarity factor compares the reduced 
subspaces of the PCA models, and is calculated from the angles between the principal components: 
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(4-6) 

 

By reducing the dimensionality, it is possible to reduce the original principal component subspaces to 
smaller dimensions of the snapshot and historical data, designated as L and M respectively.  Using this 
notation, the PCA similarity factor can easily be calculated as: 
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(4-7) 

Using the PCA similarity factor, all included components of the subspace are given equal weight.  To 
improve upon this, the modified PCA similarity factor is weighted by the magnitude of the corresponding 
eigenvectors: 
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The comparison of how effective this improvement may be is included in the demonstration details 
provided in Section 6.  Investigating the similarity of the PC subspace is only one part of the pattern 
matching test utilized.  It is also important to identify the periods of time when the raw system data is 
most similar.  To determine this, the distance similarity factor is also employed.

 
Distance Similarity Factor 

 

The distance similarity factor is based upon the concept of using the Mahalanobis distance to 
measure the distance between the centers of the data sets.  The center of the data is defined as the sample 
means of the historical and snapshot windows: 
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(4-9) 

and the Mahalanobis distance is defined as: 
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where the matrix Σ-1 is the pseudo-inverse of the covariance matrix of the dataset.  It is calculated 
using singular-value decomposition, incorporating only the number of eigenvectors used to explain the 
same data variance utilized for the PCA decomposition.  The distance similarity factor is defined as the 
probability that the center of the historical dataset is at least a distance Φ from the snapshot dataset.  By 
assuming a Gaussian probability distribution, this probability can be estimated by the complimentary 
error function, or: 
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As the program scans through the historical data, it calculates the PCA similarity factor, the modified 
PCA similarity factor, and the distance similarity factor for all historical windows compared to the 
snapshot window being tested.  An overview of this process is included in Figure 4.5.  Once these metrics 
have been computed for all historical windows, the most similar historical (known fault-free) windows 
are selected for comparison.  
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Figure 4.5 pattern matching algorithm schematic
 

To find the most similar historical windows, 5 different pattern matching metrics were used in total: 
the three described above (PCA similarity factor, modified PCA similarity factor, distance similarity 
factor) as well as two metrics that averaged the factors.  One was the average of the PCA similarity factor 
and the distance similarity factor, and the other was the average of the modified PCA similarity factor and 
the distance similarity factor. 

4.4.3 PCA Fault Detection 

Once the historical data has been compiled, the next step is the PCA-based fault detection.  As 
discussed above, the data is all normalized prior to analysis, then a PCA model is created based upon the 
historical data.  From this PCA model, thresholds for faults are calculated in both the PC and residual 
subspaces.  Once the fault thresholds have been calculated, the snapshot data undergoes the same scaling 
and PCA transformation as the historical data, and the results are compared with the thresholds.  A fault is 
considered to have occurred when a certain percentage of the snapshot data points exceed the thresholds.  
Figure 4.6 provides a flowchart of the process for reference. 
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Figure 4.6 Fault Detection Algorithm Schematic 

Hotelling’s T2 

Once the reduced model was created using the historical data, the squared prediction error (SPE) and 
Hotelling’s T2 statistic for each time-step in the snapshot window data were calculated.  The T2 statistic 
can be calculated as 

212
 TxPPxT TT  

 (4-12) 

where P is a matrix of the reduced space principal components, and x is the measurement matrix.  The T2 
threshold assumes a Gaussian distribution, so the control limits at significance level α can be calculated as 
(Nomikos and MacGregor, 1995) 

 (4-13) 

where n and sref are the number of observations and the estimated standard deviation of the t-score sample 
over the time interval.  Note that the Gaussian assumption may not be valid for all AHU-VAV data, and 
the details of this investigation are included below.  Since the size of the snapshot windows being used for 
the PCA analysis is relatively small, the threshold value is calculated using a larger window of multiple 
historical windows.  This prevents the threshold from fluctuating too drastically from window to window. 
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Squared Prediction Error 
The second metric used for fault detection is the SPE, or Q-statistic.  The SPE is calculated from the 

residual subspace, and can be calculated using:  

2
2

)(  xPPISPE T

 
(4-14) 

where x is a new sample vector, and δ2 is the threshold for the SPE with a significance level α.  The δ2 
value is calculated as (Nomikos and MacGregor, 1995) 

2
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where the chi-squared variable is the critical value with 2m2/v df at a significance level α, and m is the 
mean value of the Q-residuals from a larger window.  Again, the threshold was calculated using the 
extended historical window.  Additionally, two other methods were experimented with for setting the 
threshold – one built in method in the Matlab PCA Toolbox, and the other suggested in other literature. 

For each time-step, the system was determined to be faulty if the 99% of the T2 or SPE values 
exceeded the threshold within a given window.  Since false alarms are known to plague PCA-based fault 
detection methods, this level was set very high.  Different values for the alpha were tested during the 
demonstration and tuning of this method. 

4.4.4  Method Development and Optimization for AHUs 

The above methodology creates a framework upon which to base the AFDD algorithm, but this 
skeleton of a technique required significant experimentation for optimization.  Optimization of this 
method is based upon maximizing the sensitivity of the algorithm to faults, under a strict constraint of 
minimal false alarms.   

In practice, faults to AHU-VAV systems are not considered to be as critical as faults to primary 
systems like chillers and boilers, since space conditioning is often still possible under faulty operating 
conditions and the costs associated with AHU-VAV faults are perceived to be less costly.  With increased 
investigation, the IAQ and cost impacts of hidden AHU faults are becoming better known, but for the 
purpose of this demonstration it was deemed essential to maintain an overall false alarm rate below 1%.  
This limit was determined through meetings with industry personnel who indicated a false alarm rate any 
greater would result in the AFDD system being ignored in practice. 

Under this strict limitation, the sensitivity of the algorithm to fault detection was then maximized.  
This maximization was twofold: maximize the number of faults detected, and maximize the different 
conditions under which various faults can be detected.  Due to the fact that AHU-VAV systems move 
through a multitude of different operating conditions based upon outdoor air conditions and interior 
building conditions, most faults are only detectable when they actually have a negative effect on the 
overall performance of the system. 

In order to optimize the methodology a number of different variables were investigated.  Due to the 
number of variables, and the time required to run each test, it was not possible to perform a parametric 
analysis of all possible combinations, but baseline values were selected based upon recommendations in 
existing literature and individual variables were varied one at a time, or in certain instances two or three at 
a time. 

A brief overview of the variables/methodologies investigated is as follows: 
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1. Data Scaling / Preprocessing – The raw process data from the BMS arrives in many different units 
and magnitudes.  In order to prepare this data for analysis, it must be scaled to even out the impact of 
the different variables.  To do this, a few different methods were tested. 

2. Window Size – The length of the window used for the snapshot window and the historical windows 
must be the same for the purpose of the pattern matching methods, however the optimal duration is 
unknown.  Shorter windows capture a specific operating condition more effectively, but also result in 
less data being used in the analysis, so a balance must be struck. 

3. Number of Historical Windows Required – Increasing the number of historical windows used to 
create the PCA model can result in a more robust model, but this can also result in the use of less 
similar windows in the model creation that could skew the model. 

4. Window Movement Rates – The rate at which the snapshot windows need to be sampled, as well as 
the rate at which historical windows need to be sampled was experimented with.  There is a trade-off 
between accuracy and speed that was investigated. 

5. Impact of Data Normality – The use of PCA requires an underlying assumption that the data is 
Gaussian.  This assumption is met to varying degrees by different training data and snapshot windows.  
The effect upon the results of the data normality was examined in this paper. 

6. Historical Data Requirements – The quantity and quality of historical data plays a key role in the 
ability to perform accurate fault detection. 

7. Principal Component Retention – PCA-based methods are widely applied across many different 
fields in the literature, and a number of different component retention methods have been proposed.  
A number of different methods have been investigated herein. 

These different variables, and the way they impact the efficacy of the PMPCA algorithm were all 
explored, and the results of these analyses are included in Section 6, where the details of the refinement 
and demonstration are presented. 

4.5. Pattern Matching PCA Demonstrations 

The efficacy of the PMPCA method, detailed above, was demonstrated/tested during the course of the 
past year.  The demonstrations during BP2 were all carried out using various sets of offline data, spanning 
different building types and all possible operating conditions.  From the outset, the PMPCA method 
appeared promising by often accurately distinguishing faulty behavior from normal system operation.  
However, through the course of experimenting with various changes in the algorithm, the consistency of 
detection was significantly increased and, more importantly, the false-alarm rate was significantly 
decreased. 

Demonstration Overview 

The demonstrations conducted during BP2 consist of many different variations of the PMPCA 
algorithm tested across the following conditions: 

 Small office building experimental data from winter, summer, and shoulder seasons: this dataset 
is from the ASHRAE 1312 project and the experiment is conduct at the Iowa Energy Center 
Energy Resource Station (ERS).  More information is given in Sec. 4.6.2.1. The dataset is 
referred to as the ASHRAE 1312 ERS data. 
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 Medium-sized office building experimental data from winter months: this dataset is provided by 
the UTRC team (more description is provided in Sections 2.2 and 4.6.2.2) and is referred to as the 
UTRC data 

 Small office building simulation data from the developed testbed 

During all iterations of testing, detailed records were maintained.  All tests were performed for all 
five different pattern-matching metrics, and the results were recorded in both the PC and residual 
subspaces (T2 and X2 thresholds, respectively).  The records kept included the following items for all tests: 

 Percentage of data points in each window that exceed the thresholds 

 Percentage of windows deemed to be faulty 

 Overall percentage of data points correctly identified (correctly found to be faulty or fault-free, or 
the inverse) 

 Overall percentage of windows correctly identified as faulty or fault-free 

 The individual breakdown of results by each fault and season for all of the various tests 
performed 

Additionally, during the course of the study, a variety of different factors were hypothesized to be 
impacting the results.  As the tests were conducted, some other metrics were tracked as well: 

 The T2 and X2 threshold values for each window 

 The mean and median T and Q values for each test window 

 The mean, median, minimum, and maximum similarity factors for the historical data 

 The number of historical windows that the test data was compared against for each window 

 Various normality metrics 

 The percentage difference of the means of the raw data between the snapshot and historical data 
for all of the variables measured 

 Whether or not the window being tested was operating in steady-state conditions 

 The overall slope of the snapshot window 

 The standard deviations of the training and test window variables 

 The raw data used to create the training and test models 

For the purposes of space, information about all of this data for all of the different cases tested has not 
been included in this narrative.  Included are the results that can provide insight on the method’s efficacy 
and the tuning process of the method. 

Base Case & Input Methodology 

Above, the outputs and how they are tracked are discussed.  This section discusses the inputs for the 
algorithm and how they were selected and then varied during the experiments.  Due to the quantity of 
different inputs, and countless combinations of said inputs, it is not possible to conduct a parametric 
analysis of the inputs so a targeted approach was required.  To this end, the first step was to select a 
“baseline” for the inputs used in the algorithm.  This baseline was based upon values and results found in 
existing AFDD literature.  These baseline values are as follows: 
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 Steady-state filter: off (data was tracked, but was not utilized for filtering at this stage) 

 Percent of variance included in pattern-matching PCA models: 95% 

 Window size for pattern-matching: 45 minutes 

 Historical window scan rate: 5 minutes 

 Number of historical windows used: 10 

 Percent of variance included in fault-detection PCA models: 95% 

 Alpha value for SPE threshold: 0.01 

 Alpha value for T2 threshold: 0.05 

 Percentage of points in a window exceeding the threshold that constitutes a faulty window: 99% 

These baseline values were used to test three different sets of data to demonstrate the PMPCA method, 
and then individual inputs were varied to test how the results responded to the various changes.  Below is 
an overview of how the PMPCA baseline method worked for 3 different sets of data. 

ERS Data 

The first set of data tested was data acquired from the ERS test site during the ASHRAE 1312 project.  
This data was collected from a test-site that simulates a small office building.  The office building layout 
is included in Figure 4.7Error! Reference source not found..  The building consists of two AHUs, each 
of which serves 4 different rooms.  The design of the test facility was intended to have each AHU serving 
rooms with nearly identical loads.  As can be observed, each AHU serves rooms facing east, west, south, 
and one interior room. 
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Figure 4.7 ERS experimental setup 
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While the two AHUs will not be exactly the same, the performance was found to be very similar 
under all different operating conditions.  During the course of the study, AHU-B was continuously 
operated in a fault-free state, while AHU-A was artificially injected with various commonly-occurring 
faults. 

For the purpose of this study, it was necessary to gather adequate fault-free data from the system, so 
AHU-B was used to train the model with fault-free data, and AHU-A was used for the test data.  
Although this is not ideal, it was hoped that they would operate similarly enough for effective testing of 
the AFDD method. 

The ERS data was trained with 15 days of fault-free data from each season (summer, winter, and 
transition seasons) from AHU-B, and a variety of different faulty and fault-free states were tested using 
AHU-A.  The results are reported for the combined pattern-matching metrics that utilize the combination 
of the PCA similarity factor and distance similarity factor (Stot), and the combination of the modified  
 

Table 4.2 Baseline results using ASHRAE 1312 ERS data (summer)  

 

DATE Description Stot Stot,mod Stot Stot,mod

Total Fault-Free 36% 36% 1% 1%

Total Faulty 69% 66% 33% 31%

19-Aug Fault Free 9% 11% 0% 0%

25-Aug Fault Free 61% 59% 2% 0%

4-Sep Fault Free 37% 39% 0% 4%

20-Aug EA Damper Stuck (Fully Open) 0% 2% 0% 0%

21-Aug EA Damper Stuck (Fully Closed) 52% 17% 2% 4%

22-Aug RF at Fixed Speed (30%) 98% 98% 61% 61%

23-Aug RF complete failure 98% 98% 41% 26%

24-Aug Cooling Coil Valve Control Unstable 30% 57% 13% 24%

26-Aug OA Damper Stuck (Fully Closed) 100% 98% 37% 67%

27-Aug Cooling Coil Valve Stuck (Fully Closed) 100% 98% 100% 98%

28-Aug Heating Coil Valve Leaking (0.4GPM) 24% 7% 11% 0%

29-Aug Heating Coil Valve Leaking (1.0GPM) 46% 35% 0% 0%

30-Aug Heating Coil Valve Leaking (2.0GPM) 76% 61% 22% 17%

31-Aug Cooling Coil Valve Stuck (15%) 85% 85% 80% 76%

2-Sep Cooling Coil Valve Stuck (65%) 100% 100% 41% 46%

3-Sep Cooling Coil Valve Reverse Action 100% 100% 89% 54%

6-Sep OA Damper Leak (55%) 100% 100% 4% 22%

7-Sep AHU Duct Leaking (after SF) 17% 33% 0% 0%

8-Sep AHU Duct Leaking (before SF) 85% 76% 30% 0%

Pct. Of Faulty Windows

X
2
Threshold T

2
 Threshold
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similarity factor and the distance similarity factor (Stot,mod).  Additionally, the results are reported for both 
the chi-squared threshold, corresponding to the Q-residual (or squared prediction). 

As can be observed from Table 4.2, all of the pattern-matching metric and threshold combinations can 
generally distinguish between faulty operation and fault-free operation.  The T2 threshold has a false 
alarm rate of approximately 1%. The X2 threshold has a much higher false alarm rate, but there is still a 
significant difference between the fault-free operation and faulty operation. 

Looking at the faults that were not detected, many of these are expected to be difficult due to the 
limited impact on the performance of the system, or on the variables typically measured.  For example, 
the duct leaking downstream of the supply fan is expected to be difficult to detect without incorporating 
information from the terminal units.  Similarly, the faults surrounding the exhaust air damper are 
somewhat difficult to detect since it is the final exit point for air.  For practical applications, it is much 
more important to be able to detect the EA damper being stuck fully closed than stuck fully open, as 
maintaining an open EA damper is often part of a recommended control strategy. 

From this initial test, the potential for this method to be used for effective fault detection is clearly 
demonstrated, yet there remained some items that needed to be improved. The key areas for improvement 
were to increase the consistency of detection of leaking heating coil valves, improve detection related to 
the EA damper, and reduce the overall false alarm rate, especially the false alarm rate in the residual 
subspace.  Note that the use of the Stot pattern matching criterion is found to be slightly superior in this 
instance.  Since the Ssot and Stot,mod both show potential, results from both pattern matching criteria are 
continued to be reported. 

UTRC Data 

The second set of data used for testing is referred to as the UTRC data, as that is the source of the data 
utilized.  This data is from an AHU installed in a medium-sized office building.  In this instance, there is a 
significant amount of normal, fault-free, operational data available but fewer dates where faults were 
artificially injected.  The faults included in this study are less comprehensive than those injected in the 
ERS study, but they still provide a good test of how the algorithm detects abnormal AHU operation.  A 
number of the faults are actually damper or valve sweeps, in which the damper or valve signal is 
overridden and the damper or valve is moved incrementally throughout the possible range of values from 
fully closed to fully open.  Additionally, there is a day when stuck valve and damper faults were 
artificially introduced to the system (on February 14th).  The results are included in   
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Table 4.3. 

These results were obtained by randomly selecting 15 days from normal operation during December, 
January, and February as training data, then testing the days where known faults or abnormal behaviors 
were artificially injected into the system.  As can be observed from   
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Table 4.3, the false alarm rate for this set of data is significantly higher than for the ERS data.  Even with 
this higher false alarm rate, the overall difference between fault-free data and faulty data is significant so 
with some tuning of the method it was expected that an effective strategy could be created for this data as 
well. 
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Table 4.3 Baseline results using UTRC data  

 

Simulation Data 

The third set of data used to evaluate the baseline PMPCA method was simulation data from Drexel’s 
AHU-VAV Dynamic Fault Simulation Testbed (see Section 4 for details).  This testbed is based upon the 
same system utilized for the ERS experimental fault data.  To maintain continuity with the previous tests, 
15 days of fault-free data were utilized to train the algorithm, and the results from the faults obtained are 
detailed in Table 4.4, below. 

Similar to the previous findings, the PMPCA method successfully identifies a difference between 
faulty behavior and fault-free behavior, and again is showing a high level of false alarms.  This 
demonstrated a promising approach, given further tuning. 

Method Refinement 

Refining the method requires an optimization with multiple simultaneous goals/requirements.  The 
target is to maximize the number or varieties of faults detected, and maximize the difference in the results 
between faulty operation and fault-free operation.  Additionally, the false alarm rate must be reduced to a 
very low threshold, with an overall target of less than 1%. 

 

 

 

DATE Description Stot Stot,mod Stot Stot,mod

Total Fault-Free 41% 19% 33% 14%

Total Faulty 64% 53% 61% 50%

02-12 Fault Free 45% 25% 39% 22%

12-16 Fault Free 41% 25% 36% 18%

02-03 Fault Free 7% 7% 0% 4%

01-23 Fault Free 55% 16% 60% 19%

01-06 Fault Free 56% 21% 29% 8%

12-06 Damper Sweeps 100% 100% 92% 100%

12-08 Damper Sweeps 71% 48% 69% 54%

12-09 Damper Sweeps 70% 54% 72% 53%

01-17 Damper Sweeps 71% 59% 76% 60%

01-26 Heating Coil Sweeps 40% 33% 37% 32%

01-30 Heating Coil Sweeps 32% 18% 34% 20%

02-14 OAD & HCV Faults 64% 57% 49% 28%

Pct. Of Faulty Windows

X2 T2 Threshold
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Table 4.4 Baseline results using simulation data (summer) 

 

Fault Persistence 

Without having to significantly alter the method, a simple technique can be employed to reduce the 
false alarm rates.  This method deals with the addition of a fault persistence metric.  The concept is to 
allow for some windows to be detected as faults prior to a fault being flagged.  This allows for some 
outliers in the data, and for some brief periods of novel behavior prior to a fault alarm.  By waiting for a 
fault to be persistently flagged, it is possible to minimize the false alarm rate. 

For example, if a fault is flagged for the ERS data only when any 3 or more out of 25 windows are 
found to be faulty the false alarm rate goes to zero. 

It is recommended that some type of fault persistence method be incorporated in the application of 
this method, but the initial effort is to minimize the false alarm rate without this additional layer.  Without 
minimizing the false alarm rate prior to this layer, the PMPCA method would be effective but it would 
require some customization for each system to set the threshold for false alarms. 

DATE Description Stot Stot,mod Stot Stot,mod

Total Fault-Free 41% 21% 23% 22%

Total Faulty 77% 74% 76% 75%

19-Aug Fault Free 7% 8% 12% 9%

25-Aug Fault Free 59% 21% 27% 35%

4-Sep Fault Free 56% 33% 29% 21%

22-Aug RF at Fixed Speed (30%) 100% 100% 98% 98%

23-Aug RF complete failure 98% 100% 100% 100%

24-Aug Cooling Coil Valve Control Unstable 0% 0% 2% 13%

26-Aug OA Damper Stuck (Fully Closed) 62% 27% 36% 49%

27-Aug Cooling Coil Valve Stuck (Fully Closed) 100% 98% 100% 100%

28-Aug Heating Coil Valve Leaking (0.4GPM) 100% 100% 100% 100%

29-Aug Heating Coil Valve Leaking (1.0GPM) 0% 0% 0% 2%

30-Aug Heating Coil Valve Leaking (2.0GPM) 100% 100% 100% 100%

31-Aug Cooling Coil Valve Stuck (15%) 100% 100% 100% 100%

2-Sep Cooling Coil Valve Stuck (65%) 100% 100% 100% 100%

3-Sep Cooling Coil Valve Reverse Action 100% 100% 100% 100%

5-Sep Cooling Coil Valve Stuck (65%) 100% 100% 100% 100%

6-Sep Cooling Coil Valve Reverse Action 100% 100% 100% 100%

7-Sep OA Damper Leak (55%) 13% 13% 33% 31%

8-Sep AHU Duct Leaking (after SF) 80% 69% 73% 38%

Pct. Of Faulty Windows

X
2
Threshold T

2
 Threshold
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Historical Data Requirements 

Some of the most important items for refinement pertain to the historical data required to train the 
PCA models.  There are multiple aspects to analyzing the historical data necessary for accurate fault 
detection: 

 Duration of historical windows 

 Number of historical windows 

 Historical data quality 

By running multiple iterations of the PMPCA algorithm, while varying these inputs, significant 
insight was gained into the optimal inputs and data requirements for effective fault detection.  For 
example, the window size was reduced from 45 minutes to 30 minutes, giving the results included in 
Table 4.5, below. 

Table 4.5 Results with reduced window durations using UTRC data 

      Pct. Of Faulty Windows 

      X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  83%  71%  63%  56% 

   Total Faulty  70%  60%  57%  45% 

02‐12  Fault Free  100%  100%  100%  100% 

12‐16  Fault Free  52%  27%  4%  2% 

02‐03  Fault Free  99%  95%  96%  77% 

01‐23  Fault Free  100%  98%  100%  86% 

01‐06  Fault Free  64%  34%  17%  15% 

     

12‐06  Damper Sweeps  96%  95%  89%  79% 

12‐08  Damper Sweeps  73%  52%  57%  44% 

12‐09  Damper Sweeps  77%  62%  62%  37% 

01‐17  Damper Sweeps  61%  59%  53%  34% 

01‐26  Heating Coil Sweeps  51%  39%  45%  37% 

01‐30  Heating Coil Sweeps  53%  47%  32%  26% 

02‐14  OAD & HCV Faults  81%  68%  61%  55% 

 

As can be observed in the above table, the increased window duration was detrimental to the overall 
results, eliminating the ability to distinguish between faulty data and fault-free data due to the high false 
alarm rate.  As a result, the following test increased the window duration to 60 minutes, and the results in 
Table 4.6 were obtained. 

Increasing the window duration has effectively reduced the false alarm rates back to a level at which 
the difference between faulty and fault-free data can once again be distinguished.  It is not at the target 
level, but modification of other variables was also explored to further understand the optimal inputs.   
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Table 4.6 Results with extended window durations using UTRC data 

Pct. Of Faulty Windows 

X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  24%  27%  10%  10% 

   Total Faulty  55%  53%  46%  42% 

Feb19  Fault Free  5%  12%  0%  0% 

Feb24  Fault Free  38%  27%  9%  4% 

Feb06  Fault Free  30%  36%  18%  16% 

Feb13  Fault Free  25%  35%  12%  22% 

     

Dec06  Damper Sweeps  66%  59%  70%  55% 

Dec08  Damper Sweeps  58%  51%  39%  48% 

Dec09  Damper Sweeps  67%  57%  37%  46% 

Jan17  Damper Sweeps  56%  57%  52%  41% 

Jan26  Heating Coil Sweeps  51%  41%  43%  32% 

Jan30  Heating Coil Sweeps  34%  49%  34%  30% 

Feb14  OAD & HCV Faults  54%  60%  44%  40% 

When the same test was performed with the ERS data and simulation data, it was found that there was 
no significant difference in the use of different window lengths. 

Table 4.7 Results of reduced number of historical windows using UTRC data 

Pct. Of Faulty Windows 

X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  52%  52%  14%  19% 

   Total Faulty  66%  69%  42%  42% 

     

Feb19  Fault Free  45%  60%  5%  16% 

Feb24  Fault Free  48%  59%  2%  13% 

Feb06  Fault Free  61%  48%  40%  38% 

Feb13  Fault Free  52%  39%  11%  11% 

     

Dec06  Damper Sweeps  74%  68%  38%  36% 

Dec08  Damper Sweeps  67%  70%  46%  49% 

Dec09  Damper Sweeps  75%  76%  45%  42% 

Jan17  Damper Sweeps  71%  70%  49%  51% 

Jan26  Heating Coil Sweeps  47%  58%  32%  34% 

Jan30  Heating Coil Sweeps  47%  57%  28%  22% 

Feb14  OAD & HCV Faults  81%  83%  56%  59% 
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 Another variable impacting the quantity of historical data required is the number of historical 
windows used to create the PCA model for fault detection.  Below, Table 4.7, is a sample of results from 
using only 5 historical windows (instead of 10). 

The same reduction in windows was performed with the ERS data, and the results are provided below 
in Table 4.8.  Overall, reduction of the window size by half resulted in slightly worse results, but it is 
clear that that algorithm is much more sensitive to window size modifications than to the number of 
historical windows used to create the PCA model for fault detection. 

Note that overall the UTRC data has a higher false alarm rate than the ERS data.  The difference 
between the two is primarily due to a high false alarm rate during start-up periods.  This issue is addressed 
later during a discussion of the implications of isolating steady-state data. 

Table 4.8 Results of reduced number of historical windows using ERS data 

      Pct. Of Faulty Windows 

      X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  51%  49%  9%  10% 

   Total Faulty  77%  73%  41%  37% 

19‐Aug  Fault Free  20%  20%  4%  4% 

25‐Aug  Fault Free  72%  80%  15%  9% 

4‐Sep  Fault Free  63%  48%  7%  17% 

     

20‐Aug  EA Damper Stuck (Fully Open)  2%  9%  9%  0% 

21‐Aug  EA Damper Stuck (Fully Closed)  76%  46%  26%  20% 

22‐Aug  RF at Fixed Speed (30%)  100%  98%  70%  61% 

23‐Aug  RF complete failure  100%  100%  57%  43% 

24‐Aug  Cooling Coil Valve Control Unstable  37%  63%  20%  35% 

26‐Aug  OA Damper Stuck (Fully Closed)  100%  96%  61%  70% 

27‐Aug  Cooling Coil Valve Stuck (Fully Closed)  100%  86%  100%  86% 

28‐Aug  Heating Coil Valve Leaking (0.4GPM)  50%  35%  22%  9% 

29‐Aug  Heating Coil Valve Leaking (1.0GPM)  59%  48%  13%  11% 

30‐Aug  Heating Coil Valve Leaking (2.0GPM)  87%  67%  30%  28% 

31‐Aug  Cooling Coil Valve Stuck (15%)  89%  89%  74%  65% 

2‐Sep  Cooling Coil Valve Stuck (65%)  100%  100%  43%  57% 

3‐Sep  Cooling Coil Valve Reverse Action  100%  100%  74%  63% 

6‐Sep  OA Damper Leak (55%)  98%  96%  13%  20% 

7‐Sep  AHU Duct Leaking (after SF)  33%  37%  7%  15% 

8‐Sep  AHU Duct Leaking (before SF)  96%  96%  46%  7% 
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To see how the method responds to increasing the number of windows, tests were run using 15 windows 
of historical data.  The results from this test are included in Table 4.9. 

Table 4.9 Results of increased number of historical windows using ERS data 

      Pct. Of Faulty Windows 

      X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod Stot  Stot,mod

   Total Fault‐Free  28%  28%  1%  0% 

   Total Faulty  68%  62%  34%  34% 

19‐Aug  Fault Free  0%  9%  0%  0% 

25‐Aug  Fault Free  57%  43%  2%  0% 

4‐Sep  Fault Free  26%  33%  0%  0% 

     

20‐Aug  EA Damper Stuck (Fully Open)  0%  0%  0%  0% 

21‐Aug  EA Damper Stuck (Fully Closed)  37%  24%  0%  4% 

22‐Aug  RF at Fixed Speed (30%)  98%  96%  67%  72% 

23‐Aug  RF complete failure  100% 100%  46%  24% 

24‐Aug  Cooling Coil Valve Control Unstable  26%  28%  17%  15% 

26‐Aug  OA Damper Stuck (Fully Closed)  93%  93%  43%  78% 

27‐Aug  Cooling Coil Valve Stuck (Fully Closed)  100% 93%  100%  100% 

28‐Aug  Heating Coil Valve Leaking (0.4GPM)  35%  9%  17%  2% 

29‐Aug  Heating Coil Valve Leaking (1.0GPM)  35%  30%  2%  2% 

30‐Aug  Heating Coil Valve Leaking (2.0GPM)  70%  57%  26%  17% 

31‐Aug  Cooling Coil Valve Stuck (15%)  85%  80%  78%  76% 

2‐Sep  Cooling Coil Valve Stuck (65%)  100% 100%  33%  50% 

3‐Sep  Cooling Coil Valve Reverse Action  100% 100%  98%  67% 

6‐Sep  OA Damper Leak (55%)  96%  93%  0%  30% 

7‐Sep  AHU Duct Leaking (after SF)  22%  30%  0%  0% 

8‐Sep  AHU Duct Leaking (before SF)  87%  65%  11%  0% 

 

Using the increased number of historical windows has effectively reduced the false alarms for the T2 
threshold to an acceptable level.  However, it does not differentiate between faulty and fault-free data as 
well as the baseline methodology.  By increasing the quantity of historical data, the thresholds are 
increased but this reduces the ability to detect faults. 
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Component Retention for PCA Models 

The number of principal components (PCs) retained, via determination of the “cut point”, is the most 
important step when building a PCA model.  The number of PCs used to create the model has a direct 
impact on the method’s sensitivity to faults and/or the potential for oversensitivity resulting in false 
alarms.  As a result of the import of this step, a number of different methods have been suggested in the 
literature, both as this process pertains to AFDD and also more generally.   

Initial experimentation with this process for the PMPCA method has commenced, and some of the results 
have been included in this narrative.  As mentioned previously, the individual eigenvalues correspond to a 
percent of the model variance they each explain.  One of the first PCA retention tests was simply to 
reduce the percent of variance explained when creating the PCA models.  An example of the results 
obtained using this technique is included in   
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Table 4.10. 

Reduction of the percent variance threshold used to select the number of PCs to retain was very 
effective in decreasing the false alarm rate, especially for the chi-squared (Q-residual) threshold.  

In addition to testing the PC retention method using the magnitudes of the eigenvalues, an additional 
methodology was tested.  This method postulates that the principal components that should not be 
retained will decrease in a linear manner.  In essence, this technique can automatically identify the “elbow” 
in the data as the break-point.  This elbow technique has often been used when PCA is performed 
manually, so this method of testing the remaining eigenvalues for linearity is essentially a machine-
learning method with the same concept.  The results of this approach are detailed in Table 4.11. 

Both the linear test and the reduced percentage of variance effectively reduce the false-alarm rate that 
is commonly known to plague PCA-based FDD approaches.  Tests utilizing these methods are ongoing, 
and with some further analysis, the optimal PC retention approach will be determined. 
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Table 4.10 Results of reduced  pc retention variance using ERS data 

      Pct. Of Faulty Windows 

      X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  4%  1%  1%  0% 

   Total Faulty  35%  31%  15%  14% 

2‐May  Fault Free  8%  0%  0%  0% 

3‐May  Fault Free  7%  4%  2%  0% 

4‐May  Fault Free  1%  1%  1%  0% 

5‐May  Fault Free  1%  0%  0%  0% 

6‐May  Cooling Coil Stuck (Fully Closed)  99%  94%  96%  97% 

7‐May  OA Damper Stuck (Fully Closed)  100%  100%  100%  100% 

8‐May  OA Damper Stuck (40%)  100%  100%  99%  99% 

9‐May  EA Damper Stuck (Fully Open)  4%  1%  0%  0% 

10‐May  EA Damper Stuck (Fully Closed)  67%  27%  12%  0% 

11‐May  EA Damper Stuck (40%)  84%  65%  8%  0% 

12‐May  RF Complete Failure  89%  79%  3%  2% 

13‐May  MA Damper Unstable  2%  0%  1%  0% 

14‐May  MA Damper/ Cooling Coil Control Unstable  9%  6%  0%  0% 

15‐May  Cooling Coil Stuck (Fully Open)  100%  100%  60%  64% 

16‐May  Cooling Coil Stuck (50%)  100%  100%  12%  16% 

17‐May  Heat and Cool Sequence Unstable  6%  1%  0%  0% 

18‐May  RF Fixed Speed (20%)  98%  97%  29%  20% 

19‐May  RF Fixed Speed (80%)  96%  92%  31%  26% 

20‐May  EA Damper Stuck (Fully Open)  2%  0%  1%  0% 

22‐May  Air Filter Area Blocked 10%  0%  4%  0%  0% 

23‐May  Air Filter Area Blocked 25%  1%  1%  0%  0% 

24‐May  Air Filter Area Blocked 25%  16%  7%  2%  0% 

25‐May  Air Filter Area Blocked 25%  5%  1%  0%  0% 

26‐May  Air Filter Area Blocked 25%  1%  0%  0%  0% 

27‐May  EA Damper Fully Open  10%  8%  0%  0% 

28‐May  EA Damper Fully Open  3%  1%  0%  0% 

29‐May  OA Temperature Sensor Fault (+3 bias)  3%  0%  0%  0% 

30‐May  OA Temperature Sensor Fault (‐3 bias)  17%  4%  10%  4% 
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Table 4.11 Results of linear test for pc retention using ERS data 

      Pct. Of Faulty Windows 

      X2 Threshold  T2 Threshold 

DATE  Description  Stot  Stot,mod  Stot  Stot,mod 

   Total Fault‐Free  4%  1%  1%  0% 

   Total Faulty  32%  28%  13%  12% 

2‐May  Fault Free  7%  0%  0%  0% 

3‐May  Fault Free  4%  2%  2%  0% 

4‐May  Fault Free  4%  0%  1%  0% 

5‐May  Fault Free  0%  0%  0%  0% 

6‐May  Cooling Coil Stuck (Fully Closed)  96%  93%  76%  89% 

7‐May  OA Damper Stuck (Fully Closed)  100%  100%  100%  100% 

8‐May  OA Damper Stuck (40%)  100%  100%  97%  95% 

9‐May  EA Damper Stuck (Fully Open)  4%  1%  0%  0% 

10‐May  EA Damper Stuck (Fully Closed)  59%  13%  7%  0% 

11‐May  EA Damper Stuck (40%)  80%  50%  1%  0% 

12‐May  RF Complete Failure  74%  76%  1%  1% 

13‐May  MA Damper Unstable  2%  0%  0%  0% 

14‐May  MA Damper/ Cooling Coil Control Unstable  4%  3%  0%  0% 

15‐May  Cooling Coil Stuck (Fully Open)  100%  100%  40%  50% 

16‐May  Cooling Coil Stuck (50%)  100%  100%  7%  10% 

17‐May  Heat and Cool Sequence Unstable  3%  0%  0%  0% 

18‐May  RF Fixed Speed (20%)  95%  91%  28%  13% 

19‐May  RF Fixed Speed (80%)  76%  77%  31%  25% 

20‐May  EA Damper Stuck (Fully Open)  3%  0%  3%  0% 

22‐May  Air Filter Area Blocked 10%  1%  2%  0%  0% 

23‐May  Air Filter Area Blocked 25%  1%  0%  0%  0% 

24‐May  Air Filter Area Blocked 25%  18%  7%  0%  0% 

25‐May  Air Filter Area Blocked 25%  3%  0%  0%  0% 

26‐May  Air Filter Area Blocked 25%  1%  0%  0%  0% 

27‐May  EA Damper Fully Open  12%  10%  0%  0% 

28‐May  EA Damper Fully Open  4%  0%  2%  0% 

29‐May  OA Temperature Sensor Fault (+3 bias)  0%  0%  0%  0% 

30‐May  OA Temperature Sensor Fault (‐3 bias)  8%  1%  6%  2% 

 

Discussion of Results 

Overall, the method was successfully demonstrated for use in AHU-VAV fault detection.  Although 
there is still further work and demonstration necessary, this method has the potential to be employed for 
commercial AFDD fault detection in the near-future.  In the coming year, it will be demonstrated using an 
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online demonstration in Philadelphia, providing additional data and feedback for the method 
demonstration. 

4.6.   Recommendations for Continuing PMPCA Investigation 

Testing with Additional Data (Online and Offline) 

The upcoming BP 3 will provide the opportunity to test the PMPCA method in an online 
demonstration in conjunction with the Task 4 demonstration.  This will provide the first in-situ use of this 
novel method.  There is also expected to be an opportunity to test the data against additional offline data 
to gather additional results. 

In preparation for the online testing, the final tuning of the PMPCA method must be completed at the 
start of BP3 to allow for enough time for it to be implemented as a part of the demonstration platform. 

Final Tuning of the Method 

The final tuning of the method is currently in progress, and is expected to be wrapped up during the 
first quarter of BP3. 

Experimentation with Alternative Threshold Optimization Methods 

One of the key advantages to the PCA-based FDD method is the automation of the 
threshold/confidence limits.  Although this is automated, there are a few different techniques suggested in 
the literature for setting these limits.  The various methods for creating the thresholds commonly produce 
similar results, however it will be beneficial to test the different methods to ensure the most accurate 
method is being used. 

Impact of Steady-State Operation versus Non-Steady Operation 

The general idea of the steady-state detector is to identify the times when the AHU-VAV system is 
operating in steady-state, so conditions can be analyzed while omitting the data that occurs during 
transient operating periods.  The steady-state detector must balance the necessity of finding a steady-state 
that is reliable for fault detection and allowing for the variation found in practice so there are adequate 
samples to analyze.  In an HVAC application, there are unavoidable fluctuations due to process and 
sensor noise, as well as variation in weather and various internal conditions. 

A simple solution to this problem, proposed by Lee (2004), is employed here.  The steps for this 
method require only the data from the cooling coil control signal, the mixing air temperature, the supply 
air duct static pressure, and the return air flow rate.  The steps for the method are as follows: 

The data is acquired from a 6 minute sliding window of the data.  At each time step, the current 
values and the five prior values are analyzed.  The maximum value, minimum value, and the mean of the 
values are calculated for each of the four data points. 

The slope is calculated for each of the data points, as the difference between the maximum and 
minimum values, divided by the mean value. 

The sum of these slopes is compared to the previously calculated steady-state threshold value. 

Prior to filtering the steady-state data in practice, this threshold must first be calculated based upon 
known steady-state operating conditions in the presence of load changes.  When the process is known to 
be operating in steady-state, the threshold value is calculated as 3 times the standard deviation of the sum 
of the slopes of the four variables.   
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This steady-state filtering procedure is being evaluated presently.  The sum-of-slopes metrics are 
being actively monitored to better understand the effect of steady/unsteady operation on the results. 

Component Retention for PCA Models 

Going forward, it is recommended that continued testing with different PCA model creation 
(component retention) methods.  This part of the process has been identified as a key factor in 
determining the accuracy and sensitivity of the PMPCA method, and thus garners some further analysis.  
There are a number of different approaches for component retention proposed for FDD-type applications 
across various fields of research.  Some of the promising approaches are discussed briefly here. 

Qin (2000) recommended the use of a variance reconstruction error (VRE) method.  An advantage of 
this method is some improved robustness against some more common methods that use monotonically 
decreasing indices.  As presented above, the most common PC retention criteria identify a “cut-point” at 
which there is a significant change in some quality of the PCs, after which the remaining PCs are 
discarded.  Some potential shortcomings of monotonically decreasing PC retention criteria are instances 
where there is a rather constant decrement in the index being used or when there are multiple locations 
that satisfy the cut-point criterion.  

Chen and Lan (2009) used the VRE method and SPE thresholds for fault detection of condenser 
fouling in an air-source heat pump.  They were able to successfully demonstrate fault detection for a 
single, steady-state mode of operation. 

4.7.   Diagnostic Method Assessments and Comparison 

Understanding the true strengths and weakness of the PMPCA method requires the context of other 
existing or proposed AFDD methodologies.  In Section 4.2, multiple papers that propose different AFDD 
techniques are discussed, and many of these methods show promise for further analysis.  The difficulty 
with finding benchmarks to compare with is primarily due to the limited testing of the methods that is 
typically reported.  None of the papers identified above provided overall false alarm rates or overall fault 
detection rates, so there are no widely available benchmarks against which to compare.  To properly 
evaluate FDD strategies, it is necessary to test them in conditions most similar to normal operation. 

The overall fault detection rates for various faults and false alarm rates are one aspect.  The second 
aspect of evaluating diagnostic methods pertains to the potential for commercialization of the method.  To 
that end, a set of requirements were developed to help with the evaluation process: 

 Minimizing the customization required for different systems is essential.  All of the methods 
proposed require at least some minimal operator feedback, at least during the training phase, but 
industry feedback has shown that significant time or money will not typically be invested in the 
implementation of AFDD for AHU-VAV systems. 

 The algorithm must be able to be trained using solely fault-free data from normal operation.  
Requiring any significant quantity of faulty data from implementation sites is not feasible for 
widespread commercial adoption.  The acquisition of some limited abnormal data through a 
process of some brief system calibration may be possible, but this type of data would be limited 
in terms of the type of operational conditions it would be used for. 

 The method must be efficient enough for online monitoring.  Large commercial buildings operate 
with multiple AHUs, and the method must be continuously operating.  The computational 
requirements must be small enough to meet this demand. 
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 It must be robust enough to maintain accuracy throughout all operating conditions.  In some 
instances, this may include simply sensing that the strategy can’t be effective for brief periods of 
unique or non-steady-state operation. 

 The algorithm must be able to detect abrupt as well as slowly-occurring degradation faults. 

 A successful detection scheme can detect both process faults as well as sensor faults. 

 The false alarm rate must be minimized, with a goal of less than 1% of alarms being faulty.  
Higher false alarm rates will result in the alarms being ignored in practice. 

Using these criteria, many of the methods proposed, while insightful, may not be ready for 
commercialization.  Some recently proposed methods were tested using some of the same ERS data 
utilized in this study.  Wall et al. (2011) proposed a Hidden Markov Model (HMM) based method for 
fault detection and this method was tested using the ERS summer data from ASHRAE 1312.  This is the 
same data set used for the summer ERS tests included here. 

Overall, the method proposed performed well when detecting faults, and showed the potential of this 
type of clustering method to work.  The method performed similarly to the PMPCA method proposed 
here, effectively detecting the abnormalities in the data in a manner that corresponds to the severity of the 
fault.  Two potential difficulties with this method are the potential difficulty calibrating a threshold for the 
log-likelihood at which point a fault should be flagged, and the potential for a very high false alarm rate 
that is often observed in clustering FDD algorithms. 

4.8.  Energy Implications of AHU-VAV Faults 

A comprehensive understanding of the overall energy implications related to AHU-VAV faults is 
difficult to obtain given the information that is currently readily available.  There are two key applications 
that can benefit from an increased understanding of the energy impact: fault remediation prioritization, 
and the design and valuation of AFDD tools.  

For the first application, it is necessary to understand the energy impact of a fault over the course of a 
typical day, given the seasonal operating conditions.  With an accurate estimate of this value, it is possible 
to effectively prioritize the repair work in the manner that is most economically and energetically efficient.  
Additionally, the probability that a fault will worsen, or make the system unable to effectively condition 
the space are also key factors in prioritizing faults for repair. 

For the second application, it is necessary to estimate not only the energy impact, but also to estimate 
the fault occurrence probability and the probable duration that the fault will go undetected.  Reliable 
estimates for these values are much more difficult to come by.  The approach utilized in this study was to 
interview personnel with extensive experience working with AHU-VAV systems.  These individuals all 
work in Philadelphia and were able to provide very helpful insights into their experiences with AHU-
VAV faults in the field. 

Experimental Data 

In addition to using the ERS experimental data for the testing of fault detection algorithms, this data 
also provided some useful results with regard to the energy impact of faults.  By simultaneously running 
two identical AHUs side-by-side with the same loads, it is possible to calculate the difference in energy 
consumption when one is artificially injected with various faults. 
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Energy Calculation Methods 

To understand the energy impact of individual faults, four energy indices were calculated in this study:  

 Electrical energy consumed by the return fan 

 Electrical energy consumed by the supply fan 

 Energy consumed by the heating coil  

 Energy consumed by the cooling coil 

For all of the different energy indices, the data provides energy usage data in one minute increments.  
The energy consumption values were calculated by averaging the energy consumption rate over the 
course of the test period.  For example, then energy consumption during the course of an hour can be 
calculated using the relation 

 
(4-16) 

where ENdl is the accumulated energy usage (Btu or KW-h) over the hour,  ENins,i is the instantaneous 
energy consumption rate (Btu/hr or KW), t is the time interval between readings (1 min), and 60 is a 
time conversion factor, n is the total time and is 60 for hourly value.   

The instantaneous electric power consumed by the fans and pumps (PWele,i (t), Btu/hr or KW) is 
measured directly by sensors.  The sum of the electric power for a time interval is computed using: 

 
(4-17) 

 

where PWele, (Btu or KW-h) is the accumulated power usage over a time period, t1 and t2 representing 
the initial and final times over which cumulative energy use over the period is taken.  t1 and t2 have an 
unit of hour.  In terms of discrete times with readings taken every minute, Eq. (4-17) for a time period of 
24 h becomes: 

 
(4-18) 

 

where t is the time interval between readings (1 min).  The instantaneous chilled water heat transfer 
rate for the AHU cooling coil (qcc,i, Btu/hr or KW) is computed using (Gao et al., 2004) 

qcc,i, = Kcc Qcc (Tccmw − Tccew) (4-19) 

where Kcc is the property/unit factor for water, Tccew and Tccmw are the coil outlet and mixed water 
temperatures (°F or °C), and Qcc is the total volumetric water flow rate (gpm or m3/s) evaluated at the 
location where mixed water temperature, Tccmw, is measured.  For chilled water, the property/unit factor is 
given by (Gao et al., 2004) 

Kcc = Kcc,r [c1 + c2 (Tccew – Tw,r)] (4-20) 
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where Kcc,r is the reference property/unit factor for chilled water at the reference temperature of Tw,r 

and c1 and c2 are curve-fit coefficients.  Chilled water is a mixture of 15% ethylene glycol and water.  

The chilled water properties of density and specific heat are not sensitive to pressure for the conditions for 
which the tests were performed.  The reference temperature for water is Tcw,r = 40F (4.44C) yielding 

Kcc,r = 473 Btu/h-gpm-F (3956.23 kJ/ m3-C).  The values of the curve-fit coefficients are c1 = 1 and c2 = 

- 0.0003 1/F (or c1 = 1.8 and c2 = - 0.00054 1/C).  Combining Eqs. (4-19) to (4-20)  yields 

 

)()]([ ,21,, ccewccmwccrcwccewrccicc TTQTTccKq 
 (4-21) 

The three measured variables for the water heat transfer rate for the cooling coil are Qcc, Tccew, and 

Tccmw.  The hourly sum of the water heat transfer rate can be determined using Eq.(4-16).  Similar to the 

cooling coil energy calculation, the instantaneous hot water heat transfer rate for the heating coil is 
computed: 

)()]([ ,21,, hcewhcmwhcrhwhcewrhcihc TTQTTccKq 
 

(4-22) 
 

Where Khc,r is the reference property/unit factor for water, Thcew and Thcmw are the coil outlet and 
mixed water temperatures (°F or °C), and Qhc is the loop volumetric water flow rate (gpm or m3/s) 
evaluated at the location where Thcmw, is sensed.  The reference temperature for water is T

hw,r
 = 120F 

(48.9C) yielding Khc,r = 500 Btu/h-gpm-°F (4181.81 kJ/ m3-°C).   

Summary of Findings from Experimental Data 

Once all of the energy consumption values have been obtained, the difference in energy consumption 
between AHU-A and AHU-B can be calculated.  This first section provides an overview of the delta of 
the airstream energy (i.e. energy from the fan and coil required to add or remove heat from the airstream).  
The next parts of this section address how these faults impact building energy consumption and the cost 
of operation.   

Fault Energy Implications: Airstream Energy 

The detailed results from the energy impact findings are included in the appendix, but a synopsis of the 
important results is included here.  As part of the experiment, the fault energy impact of fault free data 
was included in the analysis.  This provides a baseline of understanding the accuracy of this experimental 
methodology.  The two AHUs were expected to differ by some small degree due to system and 
measurement noise, as well as the impossibility of making the two systems exactly identical.  For 
reference, the fault-free system differences are included in   
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Table 4.12. 
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Table 4.12 Energy comparison of A and B systems at the ERS under fault free conditions 

 

All of the data was taken from comparing two AHUs, each serving 4 VAV boxes from 8am to 6pm.  The 
differences found from the two different AHUs span in magnitude from 6% to 20%, and from 5 kWh/day 
to 19 kWh/day.  The average magnitude of difference is 12%, and the average difference is 3% more 
energy being used by AHU-A than by AHU-B (or 2.2 kWh/day).  This provides some context with which 
to view the remaining results.  Only those faults that exceed the highest fault-free differences from 

Fault

Date Description Fans Cooling Heat Reheat Net Pct

01-29 Fault Free -0.9 0.0 -3.6 -3.8 (8) -6%

08-19 Fault Free 0.2 11.1 0.0 0.0 11 6%

08-25 Fault Free -0.7 13.9 0.0 -0.2 13 8%

05-05 Fault Free -0.5 11.6 0.1 0.5 12 10%

05-04 Fault Free -0.9 10.6 1.1 0.4 11 13%

05-03 Fault Free -0.9 6.3 0.2 -0.4 5 13%

02-17 Fault Free -0.9 0.0 -15.1 -1.5 (18) -16%

02-16 Fault Free -0.6 0.0 -18.0 -0.3 (19) -17%

05-02 Fault Free -1.2 13.2 0.2 -0.1 12 20%

AHU-A Minus AHU-B (kWh)
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Table 4.12 are included here.  The first season evaluated was the summer season, with the important 
results summarized in Table 4.13. 

 Table 4.13 Summer fault energy impacts (airstream)  

 

As can be readily observed, any problem with the cooling coil valve created significant additional 
energy, except when it was stuck closed resulting in energy savings.  Following the cooling coil were 
problems with the heating coil leaking, that created a necessity for extra cooling in addition to the extra 
energy wasted for heating.  Of course, this is only an issue when buildings are operating in a mode that 
requires simultaneous heating and cooling.  If the boiler is turned off during the heat of the summer, of 
course the heating coil faults would not have an energy impact until the boiler is turned back on.  The 
next season evaluated was the shoulder season, in this case the spring season, and the results are included 
in Table 4.14. 

 Table 4.14 Spring fault energy impacts (airstream)  

Fault

Date Description Fans Cooling Heat Reheat Net Pct

09-03 Cooling Coil Valve Reverse Action -1.1 140.2 156.7 1.0 297 146%

08-31 Cooling Coil Valve Stuck (15%) -1.7 134.8 134.2 -0.7 267 157%

09-02 Cooling Coil Valve Stuck (65%) -0.2 121.6 124.0 -0.3 245 126%

08-30 Heating Coil Valve Leaking (2- 2.0GPM) -0.3 109.6 95.3 -0.6 204 135%

08-27 Cooling Coil Valve Stuck (Fully Closed) 23.4 -193.3 -0.2 0.0 (170) -79%

08-29 Heating Coil Valve Leaking (2- 1.0GPM) 0.2 77.2 58.1 -0.6 135 86%

08-28 Heating Coil Valve Leaking (1- 0.4GPM) 3.4 50.1 28.6 -0.7 81 40%

08-23 RF complete failure -1.7 54.6 -0.2 -0.3 52 34%

08-22 RF at Fixed Speed (30%) -0.4 33.1 -0.5 0.0 32 18%

09-06 OA Damper Leak (55%) -1.0 28.0 0.1 -0.3 27 17%

08-20 EA Damper Stuck (Fully Open) 1.0 21.3 -0.1 0.0 22 11%

08-24 Cooling Coil Valve Control Unstable 2.9 17.2 -0.1 -0.2 20 15%

09-07 AHU Duct Leaking (after SF) 0.3 17.2 -0.1 -0.2 17 11%

AHU-A Minus AHU-B (kWh)
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The spring fault energy prioritization is similar to the summer fault table, in that the cooling coil faults are 
the most critical for energy consumption.  This is followed by a variety of other faults, but the other faults 
are less critical than other seasons due to the relatively lower overall space conditioning loads during the 
shoulder seasons.  The third season analyzed was the winter season, with the results included in 

Fault

Date Description Fans Cooling Heat Reheat Net Pct

05-15 Cooling Coil Stuck (Fully Open) -2.3 199.5 156.6 3.5 357 364%

05-16 Cooling Coil Stuck (50%) -1.1 128.9 99.5 2.3 230 196%

05-06 Cooling Coil Stuck (Fully Closed) 20.0 -132.5 0.6 -1.9 (114) -73%

05-30 OA Temperature Sensor Fault (-3 bias) 4.7 22.1 0.0 -0.4 26 15%

05-28 EA Damper Stuck (Fully Open) 3.7 20.3 -0.1 0.5 24 49%

05-19 RF Fixed Speed (80%) 4.3 19.1 0.0 0.3 24 24%

05-14 MA Damper/  Cooling Coil Control Unstable -1.1 15.2 1.5 0.2 16 26%

05-09 EA Damper Stuck (Fully Open) 0.0 15.6 0.1 -0.6 15 23%

05-23 Air Filter Area Blocked 25% -0.5 14.2 0.0 0.6 14 38%

05-08 OA Damper Stuck (40%) 8.5 7.9 -0.3 -1.9 14 17%

05-17 Heat and Cool Sequence Unstable 0.1 12.1 0.0 0.8 13 10%

AHU-A Minus AHU-B (kWh)
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Table 4.15. 

Of the faults tested in the winter, the majority of the major impacts were actually energy-saving faults.  
Once again, the cooling coil valve being stuck open leads the list of fault energy impacts but this is 
followed by a number of faults that save energy but create a hazardous indoor air environment.  With the 
outdoor air damper or exhaust air damper fully closed, there is no way for the overall ventilation rate to 
meet minimum safety standards.  The remaining faults in the winter were mostly related to the fouling or 
reduced capacity of the heating coil. 
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Table 4.15 Winter fault energy impacts (airstream) 

 

 

Fault Energy Implications: Building Energy Consumption 

The previous sub-section provides a baseline understanding of how much energy is wasted/saved by 
all of the faults tested at the airstream level, but it is important to take note of how this translates into 
overall building energy consumption.  To do this required a number of assumptions to be made about 
typical primary building systems.  The energy consumed at a building level is a function of the amount of 
energy consumed in the airstream and the efficiencies of the primary heating and cooling equipment.  The 
assumptions used to perform the building energy consumption calculations are included in Table 4.16 
below. 

Table 4.16 Primary system efficiency assumptions 

Primary System Efficiencies 

Chiller COP  4.0 

Boiler Efficiency  80% 

Fan Efficiency  100% 

 

Using this data, the following tables provide an overview of how various faults will impact building 
consumption.   Table 4.17 outlines the building energy consumption related to faults in the summer 
season. 

  

Fault

Date Description Fans Cooling Heat Reheat Net Pct

02-10 Cooling Coil Valve Stuck (Fully Open) -2.3 198.0 130.7 38.9 365 230%

02-12 OA Damper Stuck (Fully Closed) 3.7 1.3 -132.7 -8.3 (136) -73%

01-30 OA Damper Stuck (Fully Closed) 5.6 4.7 -112.0 -22.7 (124) -58%

02-03 EA Damper Stuck (Fully Closed) -1.6 0.0 -34.5 -6.0 (42) -40%

02-05 Heating Coil Fouling (Stage 1) 4.4 0.0 -28.5 -4.7 (29) -28%

02-09 Heating Coil Reduced Capacity 3 -0.9 0.0 -32.5 7.0 (26) -23%

02-08 Heating Coil Reduced Capacity 2 -0.4 0.0 -21.4 -2.0 (24) -27%

02-01 OA Damper Stuck (62%) -1.3 0.0 23.6 -0.7 22 20%

02-07 Heating Coil Reduced Capacity 1 -0.7 0.0 -16.6 -2.8 (20) -17%

AHU-A Minus AHU-B (kWh)
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Table 4.17 Summer fault energy impacts (building energy) 

 

The building energy consumption associated with faults in the spring season are documented in Table 
4.18. 

Table 4.18 Spring fault energy impacts (building energy) 

 

  

Fault

Date Season Description Fans Chiller Boiler Net Pct

09-03 3 Cooling Coil Valve Reverse Action -1.1 35.1 195.9 230 342%

08-31 3 Cooling Coil Valve Stuck (15%) -1.7 33.7 167.8 200 347%

09-02 3 Cooling Coil Valve Stuck (65%) -0.2 30.4 155.0 185 285%

08-30 3 Heating Coil Valve Leaking (2- 2.0GPM) -0.3 27.4 119.1 146 278%

08-29 3 Heating Coil Valve Leaking (2- 1.0GPM) 0.2 19.3 72.6 92 179%

08-28 3 Heating Coil Valve Leaking (1- 0.4GPM) 3.4 12.5 35.8 52 80%

08-27 3 Cooling Coil Valve Stuck (Fully Closed) 23.4 -48.3 -0.2 (25) -36%

08-23 3 RF complete failure -1.7 13.7 -0.2 12 23%

08-22 3 RF at Fixed Speed (30%) -0.4 8.3 -0.6 7 12%

08-24 3 Cooling Coil Valve Control Unstable 2.9 4.3 -0.2 7 16%

09-06 3 OA Damper Leak (55%) -1.0 7.0 0.2 6 12%

08-20 3 EA Damper Stuck (Fully Open) 1.0 5.3 -0.1 6 10%

09-07 3 AHU Duct Leaking (after SF) 0.3 4.3 -0.1 5 9%

AHU-A Minus AHU-B

Fault

Date Season Description Fans Chiller Boiler Net Pct

05-15 2 Cooling Coil Stuck (Fully Open) -2.3 49.9 195.8 243 661%

05-16 2 Cooling Coil Stuck (50%) -1.1 32.2 124.4 155 370%

05-06 2 Cooling Coil Stuck (Fully Closed) 20.0 -33.1 0.8 (12) -23%

05-30 2 OA Temperature Sensor Fault (-3 bias) 4.7 5.5 0.0 10 19%

05-08 2 OA Damper Stuck (40%) 8.5 2.0 -0.4 10 30%

05-19 2 RF Fixed Speed (80%) 4.3 4.8 0.0 9 26%

05-28 2 EA Damper Fully Open 3.7 5.1 -0.1 9 46%

05-14 2 MA Damper/  Cooling Coil Control Unstable -1.1 3.8 1.8 5 17%

05-09 2 EA Damper Stuck (Fully Open) 0.0 3.9 0.1 4 15%

05-17 2 Heat and Cool Sequence Unstable 0.1 3.0 0.0 3 7%

05-23 2 Air Filter Area Blocked 25% -0.5 3.6 0.0 3 17%

AHU-A Minus AHU-B
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The building energy consumption associated with faults in the winter season is itemized in Table 4.19. 

Table 4.19 Winter fault energy impacts (building energy) 

 

 

Fault Energy Implications: Operational Costs 

The above estimates can provide a good point of reference for the amount of primary energy 
consumed by various faults during different operating conditions.  The final extension is to analyze the 
cost impacts associated with this additional energy consumption.  The costs associated with the faults 
were calculated using typical prices paid by small-to-medium sized commercial and residential properties 
in Philadelphia during 2012.  Since the incremental energy costs can vary significantly based upon market 
forces and the different types of service plans provided in Philadelphia, ranges of values were used for the 
utility cost estimates.  The values utilized are included in Table 4.20, below. 

 

Table 4.20 Utility cost estimates (Philadelphia, 2012) 

Utility Costs 

Fuel  Low  Nominal  High  Units 

Electricity  $0.10  $0.16  $0.20  per kWh 

Natural Gas  $1.10  $1.33  $1.40  per ccf 

 

  

Fault

Date Season Description Fans Chiller Boiler Net Pct

02-10 1 Cooling Coil Valve Stuck (Fully Open) -2.3 49.5 163.4 211 147%

02-12 1 OA Damper Stuck (Fully Closed) 3.7 0.3 -165.9 (162) -89%

01-30 1 OA Damper Stuck (Fully Closed) 5.6 1.2 -140.0 (133) -86%

02-03 1 EA Damper Stuck (Fully Closed) -1.6 0.0 -43.1 (45) -62%

02-09 1 Heating Coil Reduced Capacity 3 -0.9 0.0 -40.6 (42) -40%

02-05 1 Heating Coil Fouling (Stage 1) 4.4 0.0 -35.6 (31) -42%

02-01 1 OA Damper Stuck (62%) -1.3 0.0 29.6 28 30%

02-08 1 Heating Coil Reduced Capacity 2 -0.4 0.0 -26.8 (27) -32%

02-07 1 Heating Coil Reduced Capacity 1 -0.7 0.0 -20.8 (21) -21%

AHU-A Minus AHU-B
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Using this data, the summer daily cost impact of the faults itemized above was calculated and 
organized in Table 4.21. 

Table 4.21 Summer fault impacts (daily cost) 

Fault: Summer Season 
Base 

Nominal  Low  Nominal  High  Pct 

Cooling Coil Valve Reverse Action  10.72  218.89  265.99  281.06  2382% 

Cooling Coil Valve Stuck (15%)  9.20  187.76  228.27  241.29  2380% 

Cooling Coil Valve Stuck (65%)  10.33  173.48  210.94  222.99  1942% 

Heating Coil Valve Leaking (2‐ 2.0GPM)  8.42  133.75  162.77  172.20  1833% 

Heating Coil Valve Leaking (2‐ 1.0GPM)  8.21  81.79  99.66  105.52  1114% 

Heating Coil Valve Leaking (1‐ 0.4GPM)  10.36  40.98  50.17  53.31  384% 

Cooling Coil Valve Stuck (Fully Closed)  11.27  (2.71)  (4.25)  (5.26)  ‐138% 

RF complete failure  7.99  0.96  1.63  2.09  ‐80% 

OA Damper Leak (55%)  8.36  0.80  1.20  1.45  ‐86% 

Cooling Coil Valve Control Unstable  7.21  0.54  0.94  1.22  ‐87% 

EA Damper Stuck (Fully Open)  10.17  0.51  0.86  1.10  ‐92% 

AHU Duct Leaking (after SF)  8.51  0.39  0.65  0.83  ‐92% 

RF at Fixed Speed (30%)  9.44  0.08  0.41  0.68  ‐96% 

 

The spring fault impact daily costs are organized in Table 4.22. 

Table 4.22 Spring fault impacts (daily cost) 

Fault: Spring Season 
Base 
Nominal  Low  Nominal  High  Pct 

Cooling Coil Stuck (Fully Open)  5.89  180.92  220.61   233.72   3648% 

Cooling Coil Stuck (50%)  6.73  115.10  140.38   148.75   1987% 

Cooling Coil Stuck (Fully Closed)  8.60  (2.75)  (3.83)  (4.45)  ‐145% 

MA Damper/ Cooling Coil Control Unstable  4.19  2.04   2.58   2.80   ‐39% 

EA Damper Fully Open  3.02  1.31   1.93   2.31   ‐36% 

RF Fixed Speed (80%)  5.66  1.20   1.80   2.18   ‐68% 

Heat and Cool Sequence Unstable  7.35  1.15   1.51   1.69   ‐79% 

Air Filter Area Blocked 25%  10.18  0.99   1.34   1.53   ‐87% 

OA Damper Stuck (40%)  5.27  (1.41)  (1.29)  (1.03)  ‐125% 

OA Temperature Sensor Fault (‐3 bias)  8.83  0.54   1.06   1.44   ‐88% 

EA Damper Fully Open  2.17  0.45   0.56   0.59   ‐74% 
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The winter daily costs associated with various faults can be seen detailed in Table 4.23. 

Table 4.23 Winter fault impacts (daily cost) 

Fault: Winter Season 
Base 

Nominal  Low  Nominal  High  Pct 

Cooling Coil Valve Stuck (Fully Open)  8.38  10.86  14.97  17.25  79% 

OA Damper Stuck (Fully Closed)  10.22  (5.83)  (6.89)  (7.13)  ‐167% 

OA Damper Stuck (Fully Closed)  8.68  (4.58)  (5.27)  (5.33)  ‐161% 

EA Damper Stuck (Fully Closed)  5.15  (1.78)  (2.21)  (2.38)  ‐143% 

Heating Coil Reduced Capacity 3  6.65  (1.62)  (1.99)  (2.12)  ‐130% 

Heating Coil Reduced Capacity 2  6.06  (1.05)  (1.29)  (1.37)  ‐121% 

OA Damper Stuck (62%)  6.19  0.98  1.13  1.14  ‐82% 

Heating Coil Reduced Capacity 1  6.39  (0.85)  (1.05)  (1.13)  ‐116% 

Heating Coil Fouling (Stage 1)  5.21  (0.90)  (0.92)  (0.83)  ‐118% 

 

Further detail regarding the building fault energy consumption and operational costs can be located in 
the appendix. 

Preliminary Expert Interviews 

As previously mentioned, understanding the overall impact of faults requires not only the rate of 
energy being wasted (or saved), but also requires some insight into the frequency at which various faults 
occur and at which they go undetected.  One manner in which this insight can be gained is via interfacing 
with industry to gather experiential and anecdotal data regarding fault frequency and fault detection. 

This interview process is currently ongoing, and some preliminary results have been compiled and 
included here.  The primary focus is on fault prioritization and frequency, but there is also an added 
benefit of ensuring alignment of the overall AFDD goal with what is desired and required for commercial 
application.  Some of this miscellany is included in the discussion following the more specific analysis of 
the fault occurrence probability data in this section. 

Fault Prioritization and Frequency 

As previously mentioned, there exists very little data on the frequency or probability of fault 
occurrence in AHU-VAV systems.  One goal of this project is to provide additional insight into this 
current dearth of data.  This information is very useful for two key reasons: prioritizing faults for AFDD 
strategies, and demonstrating the value of incorporating an AFDD tool into AHU-VAV systems.  The 
energy (and associated cost) impacts of AHU-VAV systems operating in a faulty manner are often 
underestimated by the individuals tasked with maintaining, repairing, or managing them, so illuminating 
the true impact is a key step for widespread AFDD adoption for AHU-VAV systems. 

As the interviews are still ongoing, the detailed results will not be published until the interviews are 
completed, however there have been consistent responses received about certain items, and some useful 
insights that have been included herein. 
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The most commonly occurring faults are typically air filter blockages and belt slippage.  Replacing 
air filters and belts are a common part of maintenance for AHUs.  Both of these faults can be detected by 
the PMPCA method when they start to impact system performance, but neither is the focus of the 
PMPCA method since they are generally part of routine maintenance.  Air filter status is typically 
monitored by a separate DP sensor.  A differential pressure switch was commonly used in the past, but 
now it is just as economical to use an analog pressure transmitter which allows for more flexibility. 

Belt slippage is also a common problem, and especially with large AHUs the belts typically last only 
3-4 years due to the length of the belts.  Belts are inexpensive replacement parts, and once they start to 
slip they tend to fail relatively quickly afterwards. 

The most common types of faults that don’t fall under the category of maintenance items were 
reported as pertaining to dampers and then valves, in that order.  Dampers are prone to leakage via seal 
degradation or via miscalibration.  The miscalibration can occur at initial commissioning, during 
maintenance/repair activity, or from shaft slippage during operation.  Other common valve faults include 
stuck bearings or broken actuator or linkages.  Damper faults are an important fault for an AFDD strategy 
to effectively detect since they are typically only identified under extreme conditions, and thus the faults 
can go undetected for long periods of time. 

The faults related to valves are primarily related to them becoming stuck, or some other problem with 
the actuation.  As demonstrated in Section 9.1, leaking and stuck valves are some of the most significant 
faults with regard to their energy impact.  Older valves can have seating issues that allows for some pass-
through.  The age at which this deterioration occurs is largely a function of the quality of the valves 
initially installed.  Good valves can last 20 years with an indoor installation. 

The next most commonly occurring faults were reported to be coil degradation faults.  These faults 
consist of both exterior corrosion, in which the fins develop a “skin” on them, and interior fouling that 
reduces the flow through the coil.  Both of these types of faults can eventually lead to reduced heat 
transfer capacity. 

The interview subjects reported that sensor faults are less common than all of the previously 
discussed faults, with the exception of active sensors like relative humidity and CO2 sensors.  Assuming 
they are properly calibrated from the outset, temperature sensor failures are relatively rare, and when they 
fail, the failure is normally very significant (i.e. complete failure is more common than drifting). 

Flow sensors that use differential pressure are notoriously unreliable at low flow rates, and comprise 
the most common problem found with the terminal units.  Terminal units can also fail with problems to 
the actuator or on a longer timeframe with the controller (although often these units are combined into a 
single part in modern systems). 

Other faults that are much rarer include control faults (e.g. schedule problems) and fan faults. 

4.9.   Conclusions and Recommendations 

 From the literature and meetings with local industry personnel, it is evident that there exists a 
need for effective AFDD in AHU-VAV systems that is not being met by current commercially 
available products.  Research interest in this area has increased significantly in recent years, yet 
there has been no extensive demonstration of a robust and effective solution to date. 
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 A dynamic fault simulation testbed is developed and experimentally validated, which allows for 
the simulation of 51 discrete faults during any seasonal operating condition specified by the user.  
Nearly all of these 51 faults can also be adjusted so different severities can be tested as well.   

 The PMPCA method proposed herein shows promise for evolving into a commercially viable 
methodology.  The results included in this paper demonstrate the successful ability to distinguish 
between faulty and fault-free system operation. 

 The PMPCA method is in the process of being refined.  During this refinement process, it has 
been found that the most important parameters are those pertaining to the creation of the PCA 
models, followed by the size of the window used for analysis, and other historical data 
considerations. 

 At the current stage of refinement, the PMPCA method has been demonstrated to have a false 
alarm rate below 1%, with consistent detection of most faults.  Further improvement is expected 
during the first quarter of BP3. 

 Part of evaluating the benefit of an AFDD system for AHU-VAV systems is understanding the 
overall economic impact.  The analysis conducted herein contains useful data and insights that 
can aid with quantifying accurate estimates of the value of effective AFDD for AHU-VAV 
systems. 

 This coming year will bring final refinement of the detection method, and preparation of this 
method for the online demonstration.  By the end of BP3, the online demonstration is expected to 
be in place.  This will be a key step in testing the effectiveness of the method. 

 Additionally, extensions of PCA fault detection methods have the potential to be used for 
diagnostic work.  Experiments with this will commence this year, as well as review of existing 
diagnostic strategies that show promise. 
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5. Envelope Fault Diagnostics 

5.1  Introduction 

Analyzing building envelope faults helps to effectively address air leakage in and out of the building. 
This in turn helps to ensure acceptable indoor air quality and reduced energy consumption for heating or 
cooling. Many techniques have been developed to measure the air flow across the building envelope and 
characterize the envelope faults.  Some of the commonly used techniques are: 

• Tracer gas test 
• Blower door test 
• Theatrical smoke test 
• Infrared (IR) Thermography 

This report explains the objectives, advantages and disadvantages of each of these techniques. 

A summary of the Blower door and IR thermography tests performed on Building 101 is also 
included in the latter section of this report. 

The main goal of envelope fault characterization is to analyze air flow in and out of a building. It 
helps to identify sources of air leakage and thermal bridging which when addressed effectively help to 
ensure acceptable indoor air quality and also help reduce heating and cooling energy consumption. 

Various techniques have been developed to measure how the air flows between the inside and the 
outside of a building, between different zones within the building as well as air flows through the 
mechanical systems. 

Some of these techniques are: 

 Tracer gas test 
 Blower door test 
 Theatrical smoke test 
 Infrared (IR) Thermography 

Each technique helps to analyze the air flows in different ways and has its own advantages and 
disadvantages.  

 The Tracer Gas test helps to accurately quantify the air flow across a given boundary during 
normal operating conditions. However, it does not help to identify the exact sources of leaks. 
Also, the equipment required for this testing method is much more expensive compared to 
other techniques. 

 Blower Door Test helps to measure the tightness of the building. It is a reliable and a cost 
effective way to compare the air leakage between two buildings. 

 In order to demonstrate the Blower Door test method and its applications, a summary of blower door 
tests performed on building 101 is included in a later section of this report. The goal of this test is to 
characterize the building air leakage. 

 Theatrical Smoke test 

Theatrical smoke is used for locating air leakage pathways or exact leak locations in the building 
envelope. The theatrical smoke test is often used in conjunction with a blower door test. The blower door 
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test often indicates how tight or how leaky the building is, but not the exact locations of the leaks. Hence, 
it needs to be used in conjunction with other tests such as theatrical smoke or IR tests to identify the leak 
sources. The theatrical smoke makes it easier to spot the leak locations. The equipment required for this 
test is inexpensive; however, it does require regular maintenance. 

 Infrared Thermography is often done in conjunction with a Blower Door Test. While the 
Blower Door test identifies the air leakage locations in the building envelope, the IR 
thermography identifies the thermal bridges in the envelope. The two tests performed 
together help to identify potential retrofit solutions to reduce energy consumption within the 
space. 

While the IR thermography and Theatrical smoke test both help to identify the exact leak sources, the 
theatrical smoke test has an advantage over the IR test. The IR test requires manipulation of the HVAC 
system to achieve a temperature differential of at least 10 F.  However, while the smoke test method 
simply identifies the leak location, the IR thermography also identifies thermal bridges within the 
envelope. 

An IR Thermography test was also conducted on Building 101 and the test results have been included 
in a later section of this report. 

The various tests identified above, thus, help to analyze and characterize the envelope faults. These 
faults when addressed effectively can contribute to significant reduction in energy consumption of the 
building. 

5.2 Literature review 

Tracer Gas Test 

The concept of the tracer gas leak test system is to trace escaped gases that exist at a low 
concentration in the atmosphere 

While Blower door tests and duct pressurization tests help to identify leakage characteristics of the 
envelope and air distribution systems at elevated and uniform pressure differences, the tracer gas test 
accurately measures how much outside air actually enters the house under normal operating conditions. 
Thus, the Tracer gas methods are used to determine the air movement across a boundary during normal 
operating conditions. The boundary could be the building shell, a zone within the building or a room 

However, tracer gas detection equipment is expensive compared to blower door testing and IR 
thermography. This serves as a disadvantage and is the reason why Tracer gas test is not as widely used as 
the blower door test although it gives the exact quantification of the air flow. 

Test process 

The tracer gas is injected into the room and mixed to a uniform concentration using the air handler or 
portable fans. The rate of decay in concentration of the tracer gas is used to calculate the air exchange rate 
due to infiltration. Thus, the flow of air across the boundary is determined by looking at the initial and 
final concentrations of the tracer gas and the time period between these concentrations. 

Tracer gas test can be categorized as: 

 Single Zone tests 

 Multi Zone tests 
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Single Zone tests measure the net whole-building air exchange rates under a variety of operating 
conditions, while Multi Zone tests provide information as to how much outside air is distributed room to 
room inside the building. 

Effective Tracer gas characteristics 

 Detectable at low concentration 
 Safe for humans 
 Not naturally occurring 
 Neutral buoyance in air. 

Blower Door Test 

A Blower Door is a diagnostic tool that measures the degree of a building’s air-tightness. It identifies 
the leakage characteristics of the building envelope at elevated and uniform pressure differences. 

It proves to be a reliable, highly accurate and cost-effective method for determining a building’s air 
leakage performance. The number of air changes per hour at a standard pressure differential reveals the 
building envelope’s air leakage profile. 

Reasons for performing a Blower Door test: 

 Helps to reduce energy consumption due to air leakage 
 Avoid moisture or condensation problems 
 Avoid uncomfortable drafts caused by cold air leakage from the outside 

 

Although the Blower Door method does not give a measurement of actual ventilation during normal 
building operation, it is useful: 

 To compare the leakage area of two different buildings 
 To identify leakage sources within the building envelope 
 To determine leakage reduction after an individual retrofit. 

 

Blower Door method is also helpful in determining component leakage which helps to identify the 
distribution of leaks across the envelope. In this case, the building is divided into sections and the leakage 
is measured separately in each section. Multiple blower doors are used to simultaneously depressurize the 
test space as well as the adjacent spaces relative to outdoors. Thus, there is always a zero pressure 
difference between the test space and the adjacent spaces. This helps to ensure that there is no air leakage 
between the test space and the adjacent spaces. Thus, the air leakage measured for that space is indicative 
of the leaks associated from the space to outdoors. 

Test process 

A Blower Door is a powerful fan that is mounted into the frame of an exterior door. The fan pulls air 
out of the house, lowering the air pressure inside. The higher outside pressure then flows in through all 
unsealed cracks and openings. 
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Equipment for the test 

 Blower door consists of a frame and a flexible panel that fits in a doorway, a variable speed fan, a 
pressure gauge to measure the pressure differences inside and outside the home and an airflow manometer 
and hoses for measuring air flow. 

 There are two types of Blower Doors- 
 Calibrated 
 Non-calibrated 

A calibrated blower door has several gauges that measure the amount of air pulled out of the house by 
the fan. Non-calibrated blower doors, on the other hand, can only locate leaks in the envelope. This does 
not help determine the overall tightness of the building. The calibrated blower doors make it possible to 
quantify the amount of air leakage. 

The Blower Door technique uses a parameter called the Effective Leakage Area which is considered 
the area of an opening which would provide the same air flow as the building shell when subjected to a 
given pressure differential. 

Theatrical Smoke Test 

Theatrical smoke is used for locating air leakage pathways or exact leak locations in building 
envelope. 

The theatrical smoke test is often used in conjunction with a blower door test. The blower door test 
often indicates how tight or how leaky the building is but not the exact locations of the leaks. Hence, it 
needs to be used in conjunction with other tests such as theatrical smoke or IR tests to identify the leak 
sources. The theatrical smoke makes it easier to spot the leak locations. 

Usually in a blower door test, the space being tested is depressurized; however, in the case of a 
theatrical smoke test, the space requires to be pressurized so that the smoke flows outside. 

Test Process 

The use of theatrical smoke to detect air leakage requires pressurization of the space to be tested. This 
is achieved with the help of Blower door tests. However, the leakage or air flow is not clearly visible with 
the blower door test.  

Theatrical smoke is then introduced in the space. Due to pressurization technique, the smoke can be 
seen from the exterior, escaping from the space through various leaks in the envelope. This, thus, makes 
the leakage sites visible. 

These tests should usually be conducted after a space has been insulated. It is easier to create a 
pressure difference inside and outside if the envelope is tight. The equipment required for theatrical 
smoke is pretty inexpensive, however, does require regular maintenance. 

Thus, the results of a blower door test allow a prediction of how much air leakage there could be 
under typical environmental conditions. With the aid of theatrical smoke, air leakage can be visually 
identified.  

Infrared Thermography 

The IR thermography measures surface temperatures by using infrared video and still cameras. The 
images on the video or film record the temperature variations of the building’s envelope, ranging from 
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white for warm regions to black for cooler areas. The highest temperatures in a thermographic image 
indicates highest amount of heat loss. 

Thermographic inspections can be either interior survey or exterior survey. Interior scans are more 
common because warm air escaping from a building does not always move through the wall in a straight 
line. Heat loss detected in one area of the outside wall might actually have originated at some other 
location on the inside. Also, it is harder to detect temperature differences on the outside surface of the 
building during windy weather. Because of this difficulty, interior surveys are generally more accurate 
because they benefit from reduced air movement. 

The main difference between IR thermography and a blower door test is that, IR thermography helps 
to identify thermal bridges in the envelope and likely locations for mold or mildew growth due to 
moisture problems. Blower door test on the other hand identifies air leakage locations in the building 
envelope.  

Thermographic scans can be used in conjunction with Blower Door tests. The Blower Door test 
exaggerates the air leaking through the building envelope defects. Such air leaks appear as black streaks 
in the IR cameras. 

While the IR thermography and Theatrical smoke test both help to identify the exact leak sources, the 
theatrical smoke test has an advantage over the IR test. The IR test requires manipulation of the HVAC 
system to achieve a temperature differential of at least 10 F.  However, while the smoke test method 
simply identifies the leak location, the IR thermography also identifies thermal bridges within the 
envelope 

Thus, the various tests listed above help in identifying and characterizing envelope faults. Effectively 
addressing these faults can contribute to significant reduction in energy consumption and increase in 
energy efficiency. 

5.3.   Envelope fault characterization methods and results 

Conduct IR thermography test on Bldg. 101 

Utilize Mark Group to conduct test 

Mark Group performed the IR thermography on Building 101 with the main objective of 

 Identifying air leakage spots  
 Identifying locations where the existing insulation was no longer effective  
 Identifying the locations in the existing structure which resulted in maximum heat loss.  
 The IR test was performed on the exterior of the building. 

The IR thermography conducted by Mark Group on Building 101 indicated that the building is 
basically in excellent shape; however, it does require a few improvements such as addressing cracks in 
the envelope or broken air seals at the soffit, windows, double doors, etc. in order to improve its energy 
performance. 

The hypothesis on building inspection was that the building air leakage was concentrated around 
building’s soffits and around the doors. The observations after the test confirmed the hypothesis to some 
extent. The air leakage spots as well as heat loss spots identified through the IR thermography include: 

 Cracks in bricks where the pointing was no longer effective 
 Building soffits without efficient air sealing or insulation  
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 Large arched windows due to ineffective air sealing 
 Air gaps around door frames 
 Underside of the large porch ceiling. 
 Concrete foundation due to ineffective insulation. 

Generate summary of results and validity of test to identify air leaks 

Observations and Recommendation based on the IR Thermography Results: 

1. Building Envelope – Brick Walls: 

Cracks in building envelope due to degraded wall mortar result in leakage of conditioned air as well 
as water infiltration. This results in heat loss and deterioration of the structure affecting the overall energy 
consumption.  

This issue can be addressed by re-pointing the cracks in the wall.  

 

Figure 5.1  Heat loss through wall cracks 

 

2. Heater/radiator: 

Heaters located beneath the windows were observed to be conducting heat through exterior walls. 
This can be addressed by providing insulation behind the radiator. 

3. Building Soffit – Ceiling and Roof:  
 Ceiling Joists penetrations into the wall: 

The junction between the third floor ceiling joists and the exterior walls have 1/8” to 1” gap around 
them which results in substantial heat loss through the soffit.  
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Figure 5.2  Heat loss through building soffit 

 Roof Joists penetrations into the wall 

A similar issue is observed with roof joists, which indicates that the junctions where the joists or other 
structural members meet the exterior wall are not effectively sealed against air infiltration. 

This issue can be addressed by caulking or air sealing the gaps or cracks between the wall and ceiling. 
The penetrations of the roof joists and exterior wall can be effectively insulated with the help of closed 
cell spray foam. 

 Roof ridge 

The area where the insulation meets the roof ridge is not effectively air sealed. This results in heat 
loss through the roof ridge. This issue can be addressed by either repairing the existing insulation or by 
providing spray foam along the underside of the roof ridge in order to ensure complete air seal as well as 
effective insulation at junctions. 

4. West-side Windows:  

The IR thermography detected cracks in window frame and loose trim work for large arched windows 
on the West side of the building on the interior as well as exterior which were a source of air infiltration 
and heat loss. Cracks were also observed in the caulking around the small arched windows on the west 
side from the interior. 
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Figure 5.3  Heat loss through cracks in window frames 

5. Doors and Windows:  

The IR test detected gaps along the edges and the middle of double doors which contributed to heat 
loss. These issues could be resolved with the help of effective air sealing and weather stripping. 

6. Covered Porch: 

The IR thermography test identified the need of insulating the porch ceiling as heat loss was detected 
through the ceiling from the heated rooms above. 

 Summary 

1. The IR Thermography test, thus, helped to identify source of air infiltration in the building envelope 
such as: 

a) Window frames 
b) Cracks in brick walls 
c) Air gaps at the junctions where joists penetrate into the exterior wall 

2. The IR test also helped to identify the parts of the roof where the insulation had become ineffective. 
This helps to analyze the need for putting in new insulation or repairing existing insulation. 

3. Another major energy saving potential identified with the help of IR thermography is the need for 
new insulation to be installed in areas which contribute to major heat loss, such as, between the 
radiators and exterior walls, on the covered porch ceiling as well as effective insulation under the roof 
ridge. 
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5.4.     Summarize blower door testing results for Bldg. 101 

Obtain test summary report from appropriate person 

Camroden Associates, Inc. visited building 101 on January 27, 28 and 29 of 2012.  The focus of the 
visit was to characterize the building enclosure in terms of air leakage rates and leak locations.  The 
building was inspected and several tests using calibrated fans and pressure difference data acquisition 
were conducted. 

Generate summary of results to identify air leaks through the envelope in Bldg. 101 

General observations from the various blower door tests conducted on Building 101 are: 

 1.8 ACH50 air leakage rate for Building 101 which makes the building relatively air-tight for 
its size in comparison to historical test data for non-residential buildings. 

 Air leakage sites are fairly well distributed around the building enclosure 

 The air leakage through the fire dampers located in the basement is quite high in comparison 
to the total shell leakage 

 Significant internal air leakage paths were observed indicating air leakage through the 
internal structure itself. 

 Suite 210 in the North wing was observed to be leakier to the outside than the other north 
wing floors. 

 Air leakage rate through outdoor air dampers was observed to be higher than leakage through 
the enclosure. 

The table below indicates a detailed summary of the findings. 

Table 5.1 Summary of the findings 

Summary of Findings  

Building enclosure air leakage (excluding HVAC and smoke 
control damper leakage) 

27, 990 cfm at 50 pascals (1.8 ACH50; 0.32 cfm 50 per sq.ft of 
enclosure) 

36,112 cfm at 75 pascals; (0.41 cfm 75 per square foot of 
enclosure) 

5,600 cfm at 50 pascals is estimated to be through windows 

Air leakage through smoke control dampers located in the 
basement 

2,735 cfm at 50 pascals (in addition to 27,990 cfm50) 

8cfm/sq.ft of damper face area (excluding a damaged damper) 

Air leakage through outdoor air and make-up air dampers 4,534 cfm at 50 pascals ( in addition to 27,990 cfm50) 

54 cfm/sq.ft 

Total enclosure air leakage including closed damper leakage 35,259 cfm50  (2.23 ACH50) 

Suite 210 leakage: 

Total leakage 

Air leakage from 210 to the outside 

Air leakage to other interior spaces through HVAC distribution 
system 

 

16,334 cfm50 

4,879 cfm50 

 

3,013 cfm50 
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Air leakage to other interior spaces through structure  

8,442 cfm50 

Interesting Observations  The north wing basement and suite 210 run 10 – 20 
pascals positive relative to the surrounding areas (the 
return damper in suite 210 does not appear to cycle 
open) 

 The south wing basement suite (Oxycool) runs 
around 70 pascals negative when the environmental 
chamber exhaust is operated 

 The smoke relief dampers in the ceiling of the core 
portion of the building are open all the time, creating 
a single zone condition with attic areas B, C and D 

 Exhaust fan 3 is installed backwards, apparently 
contrary to the drawings. 

 

The main purpose of the project was to characterize the building enclosure air leakage. 

Activities conducted 

 The building enclosure, floor penetrations, stairwells, elevator shafts, utility chases and demising 
walls were inspected for intentional and unintentional gaps, holes and openings 

 Pressure maps of the building were made using micro-manometers and smoke bottles. Pressure 
maps were made as the building was found and with the core of the building depressurized to -50 
pascals.   

 The air leakage rate of the building enclosure was measured using fan pressurization techniques, 
including total leakage to the exterior and exterior leakage for each floor.  HVAC openings 
(motorized dampers on outdoor air and make-up air intakes) were closed and masked and exhaust 
fan motorized dampers were closed for initial test.  Dampers remained closed but the intakes were 
unmasked for a subsequent test to determine how much air leakage there is through the 
mechanical system dampers to the exterior. 

 The total leakage of suite 210 was measured.  The leakage between suite 210 and outdoors, the 
leakage between suite 210 and other interior spaces through the floors and walls and through the 
air distribution system of the unit serving the north wing was measured in various tests. 

 

Existing penetrations through the building enclosure 

Foundation: The basement is day-lit with 3 to 4 feet of basement wall above grade and a concrete 
floor slab.  The basement walls are un-insulated concrete and masonry.  The basement contains 
mechanical equipment with the following penetrations in the enclosure: 

 AHU 1, 2 and 3 serving the core and east wing, the south wing and the north wing respectively 
 AHU serving the north wing basement suite 
 7 outdoor air and make-up air louvers (AHU1, AHU2, AHU3, AHU serving the north wing 

basement suite, AHU serving the south wing basement suite, make-up air for the boiler and 
make-up air for the hot water heaters. 
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 2 exhaust louvers – one serving the environmental chamber in the south wing basement suite 
and one probable exhaust outlet serving the north wing basement suite. 

 6 fire control louvers in the basement wall. 
 

Upper Walls: The walls from grade level to the wooden roof framing are heavy brick construction at 
least four wythe thick.  The walls are un-insulated.   

The penetrations in the wall include: 

 246 double hung windows 
 42 basement windows 
 13 arch top units with 5 double hung windows 
 6 double entry doors 
 6 single entry doors 

 
Roofing System: The building is covered by a wooden frame roof system with a combination of low 

slope roof and pitched, hip roof.  The low slope roof is covered by roofing membrane.  The pitched roof is 
covered by shingles.  Fiberglass batt insulation is located between the rafters.  The attic is separated into 
five chambers which are well connected by large rectangular openings through the walls. 

The roof is penetrated by: 
 3 exhaust fan outlets with backdraft dampers (EF 1, 2 and 4) 
 3 air inlets with motorized dampers (two are passive inlets serving the north and south wing 

attics; one is connected to a supply fan that is identified as exhaust fan # 3) 
 1 roof access hatch (wired to security) 
 4 curb mounted smoke relief hatches in the low slope roof. 
 

5.5.   Pressure Tests 

Ten pressure tests were conducted for the building and for suite 210 in order to identify the air 
leakage through the enclosure. 

Objectives of each test: 

Test 1: To identify the leakage for the building envelope only. 

Test 2: To identify the distribution of air leakage sites around the building enclosure. 

Test 3: To identify leakage through fire control dampers in the basement. 

Test 4 and 5: Core area depressurization- To identify leakage between each floor and zone. 

Test 6: To identify the air leakage through outdoor air and make-up air dampers. 

Test 7: To identify air leakage from suite 210 to outdoors. 

Test 8: To identify air leakage from suite 210 (excluding the HVAC system) as if it were an 
individual building. 

Test 9: To identify overall leakage through suite 210, including leakage through HVAC systems. 

Test 10: To identify air leakage through windows. 
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Test 1: 

The main purpose of test 1 was to identify the air leakage for building envelope. The air leakage rate 
of the building envelope was determined using calibrated orifice blower doors to exhaust air from the 
building.  

 

Figure 5.4  Three fan blower door 

Instruments used for the test: 

 Multiple Model 3 Minneapolis Blower Doors manufactured by The Energy Conservatory (TEC) 

 TEC DG-700 micro-manometers to measure indoor/outdoor pressure differences and blower door 
fan air flow volume. 

 TECHLOG 2 data logging program to collect data from micro-manometers. It also provides 
computerized control of multiple Minneapolis Blower Door fans. 

Building setup for the test: 

 Whole building depressurization test 
 All AHUs off 
 All exhaust fans off 
 All interior doors open except: 

o 110 inner and stairwell doors 
o Doors to secure suites in basement closed 
o Main mechanical room door 

 All outdoor air intakes serving air handlers and make-up air intakes serving mechanical rooms 
closed and masked. 

 All smoke inlet dampers in basement closed and masked 
 Smoke relief dampers to attic open (these are always open) 
 Exhaust fans 1 – 4 have gravity dampers at terminations on roof 
 Make up air inlet through north wing roof motorized dampers closed. 
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Three blower doors are installed in each of the three exterior doorways – the north and south wing 
egress stairwell doors on the east side of the building and the west facing porch entry to the lobby. 
Exterior pressure taps were placed across all four azimuths of the building where the exterior walls meet 
grade. The locations for the fans and taps are given in the figure below. The reported pressure across the 
shell is the average of all four shell pressure measurements 

 

Figure 5.5  Location for blower door fans and pressure taps 

Pressure differences were also collected between the central core and the 1st, 2nd and 3rd floors of the 
north wing and the 1st floor of the south wing.  The internal pressure difference measurements serve two 
functions:                                                                                                                                                                                    

 They are used to assess and document single zone conditions during the whole building tests, 

 They are used to provide series leakage data during tests to study inter-zonal leakage. 
 

Results: 

Air leakage metric includes a measurement of airflow at a particular induced indoor-outdoor pressure 
difference. 

Table 5.2  Analysis results whole building depressurization test 

Air leakage at 50 Pascals 27,990 cfm 

Air leakage at 75 Pascals 36,112 cfm 

95% confidence interval 0.7 % 

Correlation coefficient squared (R2) 0.999 

Flow exponent (n) 0.628 

Air leakage coefficient (C) 2,396.0 cfm/Pan 

Equivalent leakage area @ 10 Pa  2,991.4 sq. in. 

Effective leakage area @ 4 Pascals 1,624.8 sq. in. 

Whole building enclosure area 87,200 ft2 

Building Volume 948,297 ft3 

Cfm75/ft2 enclosure (all six sides) 0.41 

ACH50 1.8 
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In comparison to the historical test data for non-residential buildings in terms of ACH50, Building 101 
is relatively air-tight for its size. 

 

Figure 5.6  Historical test data for non-residential building in terms of ACH 50 

Test 2: 

Test 2 involves the same building setup as Test 1 except that all the doors between the north and 
south wings and the core of the building were closed. The test fan flows for each zone: 

 North wing – 8,685 cfm 
 Core – 9,520 cfm 
 South wing 9,339 cfm 
 
Total flow = 27,544 cfm 
This test indicated that the air leakage sites are fairly well distributed around the building enclosure. 

Test 3: 

Test 3 uses the same building conditions as test 2, with 50 pascals indoor-outdoor shell pressure 
difference. All the fire control dampers located in the basement are unsealed. 

Total test fan flow dampers unmasked = 30,279 cfm50 
Total test fan flow dampers masked = 27,554 cfm50 
Total basement fire damper leakage = 2,735 cfm at 50 pascals 
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Figure 5.7  Fire control dampers initially sealed with self-adhering duct mask 

There are six, three foot by four foot openings with motorized dampers in closed position.  One 
damaged damper came unsealed just before Test 3.  The air leakage through this single damper appeared 
to be around 2,200 cfm50.  Unsealing the remaining dampers resulted in around an additional 500 cfm50.  
For five dampers, the air leakage amounts to around 8 cfm50 per square foot of damper face area. 

 
These damper leakage rates are, thus, observed to be quite high when compared to total shell leakage. 

 

Test 4 and 5: 

For test 4 the fans in the north and south stairwells were turned off and capped. For test 5 all the 
stairwell doors in both the north and south stairwells were closed.  During the test the core portion of the 
building was depressurized by 25 pascals relative to the exterior of the building using the three fans in 
core porch doorway.   

 
Results: 

 Closing the stairwell doors in Test 5 did not have much impact on the pressure differences 
between the core and the north and south wing.  This indicates that significant internal air leakage 
paths join each floor of the building and each zone of the building.   

 The HVAC system joins each floor, but not each zone.  This indicates that there are significant 
leakage sites through the internal structure itself.   

 Also, air leakage to the outside from each floor of the South wing is fairly uniform; however, the 
suite 210 in the north wing is leakier to the outside than the other North wing floors. 

Test 6 

Test 6 was conducted in two parts with two fans running in each location. For the first part of the test, 
the outdoor air and make-up air dampers were masked while the indoor-outdoor average pressure 
difference was held at 50 pascals. The dampers were all unmasked for the second part of the test.  

Unmasked:  34,096 cfm at 45.5 pascals 

Masked:  29,824 cfm at 45.5 pascals 
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Total air leakage through the dampers is around 4,272 cfm at 45.5 pascals (4,534 cfm50). 

The area of dampers = ~84 sq.ft of face area (which includes 5 outdoor air dampers and 2 make-up air 
dampers). 

This amounts to around 54 cfm50 per square foot of damper. 

Thus, the leakage through the outdoor air dampers is much high compared to the leakage through the 
enclosure 

 

Figure 5.8  Outdoor air intake unmasked 

Test 7: 

A single fan door was set-up the entry door so it could be used to depressurize suite 210.  All the core 
to wing doors and all the stairwell doors were open except those to suite 210.  The test fans in the 
stairwells and building core were used to create a 50 pascal pressure difference between inside and 
outside.  The single fan in suite 210 entry door was used create a near zero pressure difference between 
the interior of suite 210 and the surrounding areas. The air flow through the test fan in the suite door is 
then the air leakage between suite 210 and outdoors. 

The result was 4,879 cfm at 50 pascals to produce a pressure difference of 50 pascals between suite 
210 and the outdoors. 

Test 8: 

A three fan blower door was setup in the entry door to suite 210 with all diffusers and return grilles 
sealed. The total air leakage for the suite excluding that through the HVAC system to other floors is 
13,321 cfm50.  

Test 9: 

Test 9 uses the same setup as test 8, however, the supply diffusers and return grilles were unmasked. 
This test helps to measure the total air leakage for the suite including that through the HVAC system. The 
total leakage is 16,334 cfm50. 

This total air leakage from suite 210, 16,334 cfm50 can be partitioned into three sets: 
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 Air leakage from suite 210 through the exterior enclosure to outside – 4,879 cfm50. 
 Air leakage from suite 210 to other interior spaces through HVAC distribution ductwork – 3,013 

cfm50. 
 Air leakage through the interior structure from suite 210 to other interior spaces – 8,442 cfm50 

 
Test 10: 

Window leakage was estimated through three windows on the west wall of suite 210.  
The method used to test these windows was to seal the interior of the windows using 24 inch wide 

duct mask.  This creates a cavity between the stretched plastic film and the prime window.  A blower door 
setup in the suite entryway was used to pressurize the suite to around 50 pascals relative to outdoor air.  A 
micro-manometer was used to measure the pressure differences between the indoor air and the cavity and 
between the indoor air and outdoor air.  If the film makes a very good air seal and the windows are not 
perfectly airtight then nearly all the pressure drop is across the stretched plastic film.  By cutting a one 
square inch holes in the film the air flow leaking through the window passes through the cut hole to the 
interior. 

 

Figure 5.9  Large arched windows on the west side of the building 

In this case, the pressure drop across the film is reduced and the pressure drop across the window 
increases. A regression analysis can be applied to the data and an estimate can be made for the value of 
flow at 50 pascals.  

 
Total number of double hung windows in the building = 311 
These windows are considered to be somewhat representative; thus, the leakage through the windows 

is assumed to be 311 x 18 cfm50 = 5,600 cfm at 50 pascals. 

5.6.   Summary 

The various tests performed help to characterize the building enclosure in terms of air leakage rates 
and leak locations. The observations and results of the tests indicate: 

 1.8 ACH50 air leakage rate for Building 101 which makes the building relatively air-tight for its 
size in comparison to historical test data for non-residential buildings. 

 Air leakage sites are fairly well distributed around the building enclosure 

 The air leakage through the fire dampers located in the basement is quite high in comparison to 
the total shell leakage 
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 Significant internal air leakage paths were observed indicating air leakage through the internal 
structure itself. 

 Suite 210 in the North wing was observed to be leakier to the outside than the other north wing 
floors. 

 Air leakage rate through outdoor air dampers was observed to be higher than leakage through the 
enclosure 

The two reports – the Blower door test and the IR thermography performed on Building 101 
discussed above help to diagnose and characterize faults in building envelope. While the Blower door test 
helped analyze the air leakage through the building envelope, through HVAC penetrations as well as 
through windows; the IR thermography test helped to identify the spots in the envelope which accounted 
for maximum heat loss through the envelope. 

The IR thermography detected cracks in window frames on the west side of the building which were a 
source of air infiltration. This was confirmed through the Blower door tests which indicated an air leakage 
of 18cfm through the large arched windows. Both the IR Thermography as well as the Blower door test 
indicated that effective sealing of air gaps at points of penetrations in the exterior walls can help reduce 
energy consumption.  

Thus, the results of the two tests complement each other and help to identify and analyze the faults in 
the building envelope. These faults when addressed effectively can contribute to significant reduction in 
energy consumption of the building. 
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6. Conclusions and Future Study 

In BP2, the team members have successfully developed and demonstrated the effectiveness of the 
library of diagnostics decision support tools, which include diagnostics tools (for the RTU system, the 
AHU-VAV system, and the building envelop system) and the fault prioritization tools.   

The diagnostics tools developed for the RTU system include the use of virtual sensors as a means of 
realizing a robust and low-cost approach to monitoring, detecting, and diagnosing faults.  Various virtual 
sensors have been developed for vapor compression equipment.  Existing data and laboratory tests were 
used to develop a FDD demonstration for refrigerant and air-side faults, including faulty economizer 
operation, heat exchanger fouling, and faulty refrigerant charge. A number of virtual sensors have been 
developed using RTU test data to enable a demonstration of diagnostics systems for RTUs.  The RTU 
virtual sensors were shown to provide predictions that are within 10% of direct measurements. Some 
initial video demonstrations have been developed for RTU diagnostics.  

In addition, a complete implementation for an FDD system has been developed and connected to data 
obtained from an RTU monitored in the field. The user interface incorporates integrated virtual sensors to 
provide diagnostic outputs and performance impacts of the fault(s).  Health and economic status reports 
for equipment are generated using fault impact indices that measure degradation in system COP.      

VRC, VRMF, and VAF sensors for three DX systems at Building 101 have been developed and 
demonstrated using data from Building 101.  Although it was not possible to fully validate these sensors, 
the outputs did demonstrate the proper dependence on compressor and fan staging and did not deviate 
from normal behavior during the course of the evaluation. 

Moreover, the impact of individual faults on capacity and energy efficiency was evaluated for air 
conditioners over a wide range of operating conditions. Based on the results of this study, refrigerant 
undercharging in the range of 25% can lead to an average reduction of 20% in cooling capacity. 
Furthermore, an undercharge of about 25% would cause an average penalty in a cost penalty of $60 per 
year per ton of rated capacity for typical electricity rates. For evaporator fouling, a reduction of air flow 
rate by 50% decreased average capacity by 14%, whereas annual cost increases by $24 per ton. For 
condenser fouling, a reduction of air flow rate by 50% decreased average capacity by 9%, whereas annual 
cost increased by $80 per ton.  

The diagnostics tools developed for the AHU-VAV system utilize machine learning techniques such 
as pattern matching and principle component analysis methods.  The developed PMPCA technology does 
not require any fault data training and requires only 10-15 days fault-free training data (for each season).  
No requirement for customization for different AHU applications is needed.  Three datasets, including a 
small office building experimental data from winter, summer, and shoulder seasons; a medium-sized 
office building experimental data from winter months; and data from the simulation testbed developed in 
this project, are used to assess the effectiveness of the developed diagnostics tools.  The developed data-
driven PMPCA method was shown to detect nearly 90% of the AHU faults from the three datasets 
described above, with an overall false-alarm rate of less than 1%. 

Furthermore, a dynamic fault simulation testbed is developed and experimentally validated, which 
allows for the simulation of 51 discrete faults during any seasonal operating condition specified by the 
user.  Nearly all of these 51 faults can also be adjusted so different severities can be tested as well.  This 
testbed can now be used for comparison and analysis of AFDD strategies for this EEB HUB project, to 
identify the most effective AFDD methods as well as individual strengths and weaknesses of the methods.   
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Two building envelope diagnostics techniques, IR Thermography and Blower Door Testing, were 
chosen to be conducted on the EEB HUB headquarter building(101). A report was generated for each test 
to diagnose and characterize faults in the Building 101 envelope. While the Blower door test helped 
analyze air leakage through the building envelope via HVAC penetrations and windows, the IR 
thermography test helped to identify the spots in the envelope which accounted for maximum heat loss 
through the envelope. The IR Thermography Test detected cracks in window frames on the west side of 
the building which were a source of air infiltration. This was confirmed through the Blower Door Test 
which indicated an air leakage of 18cfm through the large arched windows. Both the IR Thermography as 
well as the Blower Door Test indicated that effective sealing of air gaps at points of penetrations in the 
exterior walls can help reduce energy consumption. 

The fault prioritization tool chains include tool chains for design phase and tool chains for operation 
phase.   The tool chains are developed using a generic model based approach that can be used for 
quantification of various faults and fault severities impact on energy consumption.  A fault modeling 
library is developed in TRNSYS. In this study, it is also demonstrated that individual faults, as well as 
fault couplings are important. The coupling effect can boost the effect of individual faults significantly.  

The development and prototyping of a scalable approach to quantify energy impact of faults during 
operational phase and to prioritize corrective actions are also completed. The current prototype can 
estimate energy impact of any damper and valve faults in an air-handling system. The prototype of the 
automated fault impact process is tested by comparing the results with the TRNSYS model for building 
101. 

These developed tools enable cost effective diagnostics solutions for existing buildings.  Both 
existing literature and our study have demonstrated that these developed tools can help to reduce the 
HVAC system energy consumption by up to 30 percent. Therefore, this subtask directly support the 
Hub’s goal of “… reduce annual energy use in the commercial buildings sector in Greater Philadelphia 
by 20 percent by 2020.” 

In the future, it would be desirable to further refine and extend the capabilities of the developed tools.  
For example, the developed decision making tools can be extended to include occupant comfort as 
additional performance indicator to limit the study only to the faults that could go undetected and cause 
significant energy performance degradation.  More tests, especially field tests and demonstrations, need to 
be conduct to further assess the developed diagnosis tools and to accelerate the technology transfer and 
commercialization process.   
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Appendix 2 

1. Zone temperature sensor bias fault 

Sensor bias fault was implemented by adding a positive or negative bias parameter into the sensor 
model, which would result in the sensor reading is higher or lower than the real temperature.  

In this project, two temperature sensor bias faults were modeled and simulated. They are positive and 
negative 3OC (5.4 OF). Figure A2.1 shows the plot of west A room temperature sensor reading under 
sensor +3OC (5.4 OF) bias faulty condition. We can see clearly, at the faulty operation the room 
temperature sensor reading is 5.4 OF higher than that at normal condition. After the AHU system was 
turned on, the temperature started to decrease until it reached and kept at the cooling setpoint. However, 
the real zoom temperature at this faulty situation was kept at 66.6 OF, 5.4 OF lower than the cooling 
setpoint. 

Figure A2.1 is the results for VAV damper position. In this plot, the VAV damper stays at 100% open 
for around one hour at faulty situation while under normal situation it doesn’t. This is because at the 
faulty situation room temperature sensor reading is 5.4 OF higher than that at normal situation, and the air 
conditioning system need more cooling to decrease the room temperature to the design region. Therefore 
the damper stays at fully open for a while and then closes down to the minimal position when room 
temperature reaches to the cooling setpoint. Accordingly, the discharge air flowrate is plotted in Figure 
A2.2. 

 

Figure A2.1. West A Room Temperature from EEB Model 
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Figure A2.1. West A Room Damper Position from EEB Model 

 

 

Figure A2.2. West A Room Discharge Airflow Rate EEB Model 
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Figure A2.3. West A Room Temperature from EEB Model 

 

 

Figure A2.4. West A Room Damper Position from EEB Model 
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Figure A2.5. West A Room Reheat Coil Valve Position from EEB Model 

 

 

Figure A2.6. West A Room Discharge Airflow Rate from EEB Model 
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bias would decrease the discharge airflow rate (Figure A2.6), while increase the usage of reheat water. 
The change of energy consumption is hard to say. Because the energy consumption increase by reheat 
water increase and energy consumption decrease by discharge airflow rate decrease need detailed 
calculation. However, the real thermal comfort definitely decreases. Because the real zone temperature is 
lower than the heating setpoint. 

2. Zone airflow rate sensor bias fault 

Like zone temperature sensor bias fault, the airflow rate sensor bias fault was also implemented by 
adding a parameter into the airflow sensor model. Figure A2.7 and Figure A2.8 are the results for airflow 
sensor +50 CFM bias fault.  Under the faulty condition, the discharge airflow sensor reading is 50 CFM 
higher than that in fault free situation. But the real discharge airflow is very close the 300CFM (Figure 
A2.7). In Figure A2.8, the VAV damper position at faulty situation is 10% larger than it under normal 
operation. Since the real discharge airflow rate, under fault situation, is close to it at normal operation, the 
zone temperature is close to that at normal operation (Figure A2.9).  

 

Figure A2.7. West A Room Discharge Airflow Rate from EEB Model 
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Figure A2.8.West A Room Damper Position from EEB Model 

 

 

Figure A2.9.West A Room Temperature from EEB Model 

 Figure A2.10.and Figure A2.11 are the result of discharge airflow sensor reading and VAV 
damper position for airflow sensor -50 CFM bias fault. In contrast with results for airflow sensor +50 
CFM bias, the discharge air is around 40 CFM than that under normal operation, and VAV damper 
position is 10% smaller than the position at fault free situation. Similar to the results of positive airflow 
sensor bias, the room temperature under negative airflow sensor bias is also very close to the normal 
airflow rate (Figure A2.12). What’s more, in both positive and negative bias faulty situation, the reheat 
coil valve is always fully closed, because the room temperate never goes to below heating setpoint.  

From the discussion, we can see, under certain range, the discharge airflow sensor bias will not affect 
the real discharge airflow, reheat water flow, and real room temperature. So in this range, the airflow 
sensor bias will not affect the energy consumption and indoor thermal comfort. 

 

Figure A2.10.West A Room Discharge Airflow Rate from EEB Model 
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Figure A2.11West A Room Damper Position from EEB Model 

 

 

Figure A2.12.West A Room Temperature from EEB Model 
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Figure A2.13, Figure A2.17, Figure A2.18, and Figure A2.19 are the results for reheat coil air side 
fouling fault. In Figure A2.13, we can see that there are a litter bit difference between faulty simulation 
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and normal simulation at the early morning. The supply fan will adjust the rotation speed to maintain the 
room air temperature, which is shown in Figure A2.17.  This reheat coil air side fouling fault increased 
the fan power (Figure A2.18and Figure A2.19). In Figure A2.19 the plot is fan power under faulty 
situation minus the fan power at normal situation. 

 

Figure A2.13. West A Room Temperature from EEB Model 

 

Figure A2.14. AHU Supply Fan Rotation Speed EEB Model 
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Figure A2.15 AHU Supply Fan Power EEB Model 

 

 

Figure A2.16. AHU Supply Fan Power difference 

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0 2 4 6 8 10 12 14 16 18 20 22 24

Fa
n
 p
o
w
e
r,
 K
W

Time, h

Supply Fan Power

RHCoil Fouling (air
side)

Fault Free

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

P
w
e
r 
d
if
fe
re
n
ce
, W

Time,h

Fan power difference



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

243 

 

 

Figure A2.17.West A Room Temperature from EEB Model 

 

 

Figure A2.18.West A Room Reheat Valve Position from EEB Model 
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Figure A2.19.West A Room Reheat Water Flow Rate from EEB Model 

Figure A2.19, Figure A2.18, and Figure A2.19 are results for reheat coil water fault under a cold day 
(Figure A2.20), when reheat coil valve is open. We can see that the reheat valve position is larger than 
that at normal operation. So does the reheat water flow rate. That is because the water side fouling will 
increase the water flow resistance and decrease the heat transfer coefficient, as we discussed before.  
Therefore, this reheat coil water side fouling fault increased the reheat water energy consumption.  In this 
project, only the AHU and VAV terminal system were investigated, the results for reheat water pump 
energy was not calculated. However, from the analysis we did in this section, we can concluded that 
reheat water pump energy consumption was changed due to the change of reheat water flow rate. 

 

 

Figure A2.20. Outdoor Air Temperature of Valve Fault Simulation 
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Figure A2.21 we can clearly see that the fluctuation of VAV damper position under this faulty situation is 
larger than that at normal operation.  So does the discharge airflow rate (Figure A2.22). The room 
temperature doesn’t change too much under this faulty operation (Figure A2.23), because the thermal 
capacitance of the room is large enough to smooth it.  

 

Figure A2.21.West A Room Damper Position from EEB Model 

 

 

Figure A2.22.West A Room Discharge Airflow Rate from EEB Model 
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Figure A2.23.West A Room Temperature from EEB Model 

 

5. Reheat Coil Valve Controller unstable Fault 

In order to show the symptoms of reheat coil valve controller unstable fault, a cold day was chosen, 
because in a hot summer day, the reheat valve will never open.   

In Figure A2.24 we can see that the fluctuation of reheat coil valve position under this faulty situation 
is larger than that at normal operation. The valve position can affect the reheat water flow rate and the 
discharge air temperature (Figure A2.26). Similar to the result in VAV damper controller unstable fault, 
the room temperature at faulty situation is very close to that at normal operation.  However, this fault will 
change the reheat water flow rate and change the reheat water energy consumption. 

 

 

Figure A2.24.West A Room Reheat Valve Position from EEB Model 
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Figure A2.25.West A Room Discharge Air Temperature from EEB Model 

 

 

Figure A2.26.West A Room Temperature from EEB Model 
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Appendix 3 

Fault	Energy	Impact	Tables:	Airstream	Energy	
 

TABLE A3.1: WINTER FAULT ENERGY IMPACTS (AIRSTREAM) 

 

  

Fault

Date Description Fans Cooling Heat Reheat Net Pct

02-10 Cooling Coil Valve Stuck (Fully Open) -2.3 198.0 130.7 38.9 365 230%

02-12 OA Damper Stuck (Fully Closed) 3.7 1.3 -132.7 -8.3 (136) -73%

01-30 OA Damper Stuck (Fully Closed) 5.6 4.7 -112.0 -22.7 (124) -58%

02-03 EA Damper Stuck (Fully Closed) -1.6 0.0 -34.5 -6.0 (42) -40%

02-05 Heating Coil Fouling (Stage 1) 4.4 0.0 -28.5 -4.7 (29) -28%

02-09 Heating Coil Reduced Capacity 3 -0.9 0.0 -32.5 7.0 (26) -23%

02-08 Heating Coil Reduced Capacity 2 -0.4 0.0 -21.4 -2.0 (24) -27%

02-01 OA Damper Stuck (62%) -1.3 0.0 23.6 -0.7 22 20%

02-07 Heating Coil Reduced Capacity 1 -0.7 0.0 -16.6 -2.8 (20) -17%

02-16 Fault Free -0.6 0.0 -18.0 -0.3 (19) -17%

02-17 Fault Free -0.9 0.0 -15.1 -1.5 (18) -16%

02-06 Heating Coil Fouling (Stage 2) 12.5 4.3 -29.7 -2.3 (15) -18%

02-11 Cooling Coil Valve Stuck (20%) -0.7 25.2 5.2 -17.5 12 7%

02-13 OA Damper Stuck (52%) -0.2 0.0 -3.0 -8.1 (11) -9%

02-15 OA Damper Stuck (62%) -1.6 0.0 -5.1 -2.0 (9) -6%

01-29 Fault Free -0.9 0.0 -3.6 -3.8 (8) -6%

01-31 OA Damper Stuck (52%) -1.0 1.2 0.1 -7.8 (8) -9%

02-02 EA Damper Stuck (Fully Open) -0.4 0.0 -3.9 -1.1 (5) -5%

AHU-A Minus AHU-B (kWh)
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TABLE A3.2: SPRING FAULT ENERGY IMPACTS (AIRSTREAM) 

 

  

Fault

Date Description Fans Cooling Heat Reheat Net Pct

05-15 Cooling Coil Stuck (Fully Open) -2.3 199.5 156.6 3.5 357 364%

05-16 Cooling Coil Stuck (50%) -1.1 128.9 99.5 2.3 230 196%

05-06 Cooling Coil Stuck (Fully Closed) 20.0 -132.5 0.6 -1.9 (114) -73%

05-30 OA Temperature Sensor Fault (-3 bias) 4.7 22.1 0.0 -0.4 26 15%

05-28 EA Damper Fully Open 3.7 20.3 -0.1 0.5 24 49%

05-19 RF Fixed Speed (80%) 4.3 19.1 0.0 0.3 24 24%

05-14 MA Damper/  Cooling Coil Control Unstable -1.1 15.2 1.5 0.2 16 26%

05-09 EA Damper Stuck (Fully Open) 0.0 15.6 0.1 -0.6 15 23%

05-23 Air Filter Area Blocked 25% -0.5 14.2 0.0 0.6 14 38%

05-08 OA Damper Stuck (40%) 8.5 7.9 -0.3 -1.9 14 17%

05-17 Heat and Cool Sequence Unstable 0.1 12.1 0.0 0.8 13 10%

05-25 Air Filter Area Blocked 25% 0.9 11.3 0.0 0.7 13 7%

05-24 Air Filter Area Blocked 25% -0.8 12.9 0.0 0.3 12 21%

05-02 Fault Free -1.2 13.2 0.2 -0.1 12 20%

05-20 EA Damper Stuck (Fully Open) -0.8 12.0 0.0 1.0 12 15%

05-05 Fault Free -0.5 11.6 0.1 0.5 12 10%

05-10 EA Damper Stuck (Fully Closed) -2.5 12.9 0.1 1.1 12 25%

05-13 MA Damper Unstable -1.1 12.0 0.0 0.4 11 17%

05-04 Fault Free -0.9 10.6 1.1 0.4 11 13%

05-12 RF Complete Failure -4.5 13.7 0.1 0.8 10 12%

05-26 Air Filter Area Blocked 25% -0.9 8.4 0.0 0.8 8 5%

05-18 RF Fixed Speed (20%) -4.2 11.0 0.0 1.3 8 9%

05-22 Air Filter Area Blocked 10% -1.0 12.3 0.0 -3.6 8 14%

05-07 OA Damper Stuck (Fully Closed) 4.8 -9.2 0.1 -2.0 (6) -7%

05-29 OA Temperature Sensor Fault (+3 bias) -1.7 8.4 0.0 -0.4 6 8%

05-27 EA Damper Fully Open -1.4 6.7 0.0 0.9 6 28%

05-03 Fault Free -0.9 6.3 0.2 -0.4 5 13%

05-11 EA Damper Stuck (40%) -1.9 6.7 0.2 0.0 5 12%

AHU-A Minus AHU-B (kWh)
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TABLE A3.3: SUMMER FAULT ENERGY IMPACTS (AIRSTREAM) 

 

 

 	

Fault

Date Description Fans Cooling Heat Reheat Net Pct

09-03 Cooling Coil Valve Reverse Action -1.1 140.2 156.7 1.0 297 146%

08-31 Cooling Coil Valve Stuck (15%) -1.7 134.8 134.2 -0.7 267 157%

09-02 Cooling Coil Valve Stuck (65%) -0.2 121.6 124.0 -0.3 245 126%

08-30 Heating Coil Valve Leaking (2- 2.0GPM) -0.3 109.6 95.3 -0.6 204 135%

08-27 Cooling Coil Valve Stuck (Fully Closed) 23.4 -193.3 -0.2 0.0 (170) -79%

08-29 Heating Coil Valve Leaking (2- 1.0GPM) 0.2 77.2 58.1 -0.6 135 86%

08-28 Heating Coil Valve Leaking (1- 0.4GPM) 3.4 50.1 28.6 -0.7 81 40%

08-23 RF complete failure -1.7 54.6 -0.2 -0.3 52 34%

08-22 RF at Fixed Speed (30%) -0.4 33.1 -0.5 0.0 32 18%

09-06 OA Damper Leak (55%) -1.0 28.0 0.1 -0.3 27 17%

08-20 EA Damper Stuck (Fully Open) 1.0 21.3 -0.1 0.0 22 11%

08-24 Cooling Coil Valve Control Unstable 2.9 17.2 -0.1 -0.2 20 15%

09-07 AHU Duct Leaking (after SF) 0.3 17.2 -0.1 -0.2 17 11%

08-25 Fault Free -0.7 13.9 0.0 -0.2 13 8%

08-19 Fault Free 0.2 11.1 0.0 0.0 11 6%

09-09 AHU Duct Leaking (before SF) -3.2 13.1 0.1 -0.4 10 7%

08-21 EA Damper Stuck (Fully Closed) -1.6 -3.8 0.0 0.0 (5) -2%

08-26 OA Damper Stuck (Fully Closed) 5.8 -2.2 -0.1 0.0 4 2%

09-08 AHU Duct Leaking (before SF) -3.8 0.9 0.0 -0.4 (3) -2%

09-04 Fault Free 0.0 0.0 0.0 0.0 0 N/A

AHU-A Minus AHU-B (kWh)
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Fault Energy Impact Tables: Building Energy Consumption 

 

TABLE A3.4: WINTER FAULT ENERGY IMPACTS (BUILDING ENERGY) 

 

  

Fault

Date Season Description Fans Chiller Boiler Net Pct

02-10 1 Cooling Coil Valve Stuck (Fully Open) -2.3 49.5 163.4 211 147%

02-12 1 OA Damper Stuck (Fully Closed) 3.7 0.3 -165.9 (162) -89%

01-30 1 OA Damper Stuck (Fully Closed) 5.6 1.2 -140.0 (133) -86%

02-03 1 EA Damper Stuck (Fully Closed) -1.6 0.0 -43.1 (45) -62%

02-09 1 Heating Coil Reduced Capacity 3 -0.9 0.0 -40.6 (42) -40%

02-05 1 Heating Coil Fouling (Stage 1) 4.4 0.0 -35.6 (31) -42%

02-01 1 OA Damper Stuck (62%) -1.3 0.0 29.6 28 30%

02-08 1 Heating Coil Reduced Capacity 2 -0.4 0.0 -26.8 (27) -32%

02-06 1 Heating Coil Fouling (Stage 2) 12.5 1.1 -37.2 (24) -38%

02-16 1 Fault Free -0.6 0.0 -22.5 (23) -22%

02-07 1 Heating Coil Reduced Capacity 1 -0.7 0.0 -20.8 (21) -21%

02-17 1 Fault Free -0.9 0.0 -18.9 (20) -24%

02-11 1 Cooling Coil Valve Stuck (20%) -0.7 6.3 6.5 12 9%

02-15 1 OA Damper Stuck (62%) -1.6 0.0 -6.4 (8) -5%

01-29 1 Fault Free -0.9 0.0 -4.4 (5) -5%

02-02 1 EA Damper Stuck (Fully Open) -0.4 0.0 -4.9 (5) -6%

02-13 1 OA Damper Stuck (52%) -0.2 0.0 -3.7 (4) -4%

01-31 1 OA Damper Stuck (52%) -1.0 0.3 0.1 (1) -1%

AHU-A Minus AHU-B
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TABLE A3.5: SPRING FAULT ENERGY IMPACTS (BUILDING ENERGY) 

 

  

Fault

Date Season Description Fans Chiller Boiler Net Pct

05-15 2 Cooling Coil Stuck (Fully Open) -2.3 49.9 195.8 243 661%

05-16 2 Cooling Coil Stuck (50%) -1.1 32.2 124.4 155 370%

05-06 2 Cooling Coil Stuck (Fully Closed) 20.0 -33.1 0.8 (12) -23%

05-30 2 OA Temperature Sensor Fault (-3 bias) 4.7 5.5 0.0 10 19%

05-08 2 OA Damper Stuck (40%) 8.5 2.0 -0.4 10 30%

05-19 2 RF Fixed Speed (80%) 4.3 4.8 0.0 9 26%

05-28 2 EA Damper Fully Open 3.7 5.1 -0.1 9 46%

05-14 2 MA Damper/  Cooling Coil Control Unstable -1.1 3.8 1.8 5 17%

05-09 2 EA Damper Stuck (Fully Open) 0.0 3.9 0.1 4 15%

05-25 2 Air Filter Area Blocked 25% 0.9 2.8 0.0 4 6%

05-17 2 Heat and Cool Sequence Unstable 0.1 3.0 0.0 3 7%

05-04 2 Fault Free -0.9 2.6 1.4 3 9%

05-23 2 Air Filter Area Blocked 25% -0.5 3.6 0.0 3 17%

05-07 2 OA Damper Stuck (Fully Closed) 4.8 -2.3 0.2 3 8%

05-05 2 Fault Free -0.5 2.9 0.2 3 6%

05-24 2 Air Filter Area Blocked 25% -0.8 3.2 0.0 2 11%

05-02 2 Fault Free -1.2 3.3 0.2 2 9%

05-20 2 EA Damper Stuck (Fully Open) -0.8 3.0 0.0 2 7%

05-22 2 Air Filter Area Blocked 10% -1.0 3.1 0.0 2 9%

05-13 2 MA Damper Unstable -1.1 3.0 0.0 2 7%

05-18 2 RF Fixed Speed (20%) -4.2 2.8 0.0 (1) -4%

05-26 2 Air Filter Area Blocked 25% -0.9 2.1 0.0 1 2%

05-12 2 RF Complete Failure -4.5 3.4 0.1 (1) -3%

05-10 2 EA Damper Stuck (Fully Closed) -2.5 3.2 0.2 1 4%

05-03 2 Fault Free -0.9 1.6 0.2 1 5%

05-29 2 OA Temperature Sensor Fault (+3 bias) -1.7 2.1 0.0 0 1%

05-27 2 EA Damper Fully Open -1.4 1.7 0.0 0 2%

05-11 2 EA Damper Stuck (40%) -1.9 1.7 0.2 (0) 0%

AHU-A Minus AHU-B
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TABLE A3.6: SUMMER FAULT ENERGY IMPACTS (BUILDING ENERGY) 

 

 

 	

Fault

Date Season Description Fans Chiller Boiler Net Pct

09-03 3 Cooling Coil Valve Reverse Action -1.1 35.1 195.9 230 342%

08-31 3 Cooling Coil Valve Stuck (15%) -1.7 33.7 167.8 200 347%

09-02 3 Cooling Coil Valve Stuck (65%) -0.2 30.4 155.0 185 285%

08-30 3 Heating Coil Valve Leaking (2- 2.0GPM) -0.3 27.4 119.1 146 278%

08-29 3 Heating Coil Valve Leaking (2- 1.0GPM) 0.2 19.3 72.6 92 179%

08-28 3 Heating Coil Valve Leaking (1- 0.4GPM) 3.4 12.5 35.8 52 80%

08-27 3 Cooling Coil Valve Stuck (Fully Closed) 23.4 -48.3 -0.2 (25) -36%

08-23 3 RF complete failure -1.7 13.7 -0.2 12 23%

08-22 3 RF at Fixed Speed (30%) -0.4 8.3 -0.6 7 12%

08-24 3 Cooling Coil Valve Control Unstable 2.9 4.3 -0.2 7 16%

09-06 3 OA Damper Leak (55%) -1.0 7.0 0.2 6 12%

08-20 3 EA Damper Stuck (Fully Open) 1.0 5.3 -0.1 6 10%

08-26 3 OA Damper Stuck (Fully Closed) 5.8 -0.6 -0.1 5 9%

09-07 3 AHU Duct Leaking (after SF) 0.3 4.3 -0.1 5 9%

09-08 3 AHU Duct Leaking (before SF) -3.8 0.2 0.0 (4) -6%

08-19 3 Fault Free 0.2 2.8 0.0 3 5%

08-25 3 Fault Free -0.7 3.5 0.0 3 5%

08-21 3 EA Damper Stuck (Fully Closed) -1.6 -0.9 0.0 (3) -4%

09-09 3 AHU Duct Leaking (before SF) -3.2 3.3 0.2 0 0%

AHU-A Minus AHU-B
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Fault Energy Impact Tables: Daily Operational Costs 

 

TABLE A3.7: WINTER FAULT ENERGY IMPACTS (DAILY COSTS) 

Fault: Winter Season 
Base 

Nominal Low Nominal High Pct 

Cooling Coil Valve Stuck (Fully Open) 8.38 10.86 14.97 17.25 79% 

OA Damper Stuck (Fully Closed) 10.22 (5.83) (6.89) (7.13) -167% 

OA Damper Stuck (Fully Closed) 8.68 (4.58) (5.27) (5.33) -161% 

EA Damper Stuck (Fully Closed) 5.15 (1.78) (2.21) (2.38) -143% 

Heating Coil Reduced Capacity 3 6.65 (1.62) (1.99) (2.12) -130% 

Heating Coil Reduced Capacity 2 6.06 (1.05) (1.29) (1.37) -121% 

Cooling Coil Valve Stuck (20%) 8.08 0.81 1.20 1.44 -85% 

OA Damper Stuck (62%) 6.19 0.98 1.13 1.14 -82% 

Fault Free 6.93 (0.91) (1.12) (1.20) -116% 

Heating Coil Reduced Capacity 1 6.39 (0.85) (1.05) (1.13) -116% 

Fault Free 5.78 (0.80) (1.00) (1.08) -117% 

Heating Coil Fouling (Stage 1) 5.21 (0.90) (0.92) (0.83) -118% 

OA Damper Stuck (62%) 9.28 (0.40) (0.54) (0.62) -106% 

Heating Coil Fouling (Stage 2) 4.51 (0.04) 0.49 0.94 -89% 

Fault Free 6.74 (0.26) (0.35) (0.40) -105% 

EA Damper Stuck (Fully Open) 5.83 (0.22) (0.28) (0.31) -105% 

OA Damper Stuck (52%) 6.89 (0.16) (0.20) (0.22) -103% 

OA Damper Stuck (52%) 4.10 (0.06) (0.10) (0.13) -102% 
 

  



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

255 

 

 

TABLE A3.8: SPRING FAULT ENERGY IMPACTS (DAILY COSTS) 

Fault: Spring Season 
Base 
Nominal Low Nominal High Pct 

Cooling Coil Stuck (Fully Open) 5.89 180.92 220.61 233.72 3648% 

Cooling Coil Stuck (50%) 6.73 115.10 140.38 148.75 1987% 

Air Filter Area Blocked 10% 3.83 (3.68) (4.37) (4.53) -214% 

Cooling Coil Stuck (Fully Closed) 8.60 (2.75) (3.83) (4.45) -145% 

MA Damper/ Cooling Coil Control Unstable 4.19 2.04 2.58 2.80 -39% 

OA Damper Stuck (Fully Closed) 5.24 (1.79) (2.07) (2.10) -139% 

EA Damper Fully Open 3.02 1.31 1.93 2.31 -36% 

RF Fixed Speed (80%) 5.66 1.20 1.80 2.18 -68% 

EA Damper Stuck (Fully Closed) 3.45 1.38 1.70 1.82 -51% 

Heat and Cool Sequence Unstable 7.35 1.15 1.51 1.69 -79% 

RF Fixed Speed (20%) 5.57 1.26 1.47 1.50 -74% 

Air Filter Area Blocked 25% 10.18 0.99 1.34 1.53 -87% 

OA Damper Stuck (40%) 5.27 (1.41) (1.29) (1.03) -125% 

Air Filter Area Blocked 25% 2.94 0.92 1.23 1.39 -58% 

Air Filter Area Blocked 25% 3.64 0.85 1.12 1.26 -69% 

OA Temperature Sensor Fault (-3 bias) 8.83 0.54 1.06 1.44 -88% 

RF Complete Failure 5.48 0.90 1.05 1.07 -81% 

Air Filter Area Blocked 25% 7.93 0.73 0.92 1.01 -88% 

MA Damper Unstable 4.12 0.57 0.77 0.87 -81% 

EA Damper Fully Open 2.17 0.45 0.56 0.59 -74% 

Fault Free 6.71 0.36 0.53 0.63 -92% 

OA Temperature Sensor Fault (+3 bias) 4.83 (0.42) (0.50) (0.51) -110% 

Fault Free 4.13 0.33 0.48 0.57 -88% 

Fault Free 5.30 0.29 0.41 0.49 -92% 

EA Damper Stuck (Fully Open) 5.08 (0.32) (0.30) (0.25) -106% 

Fault Free 3.02 0.18 0.24 0.27 -92% 

EA Damper Stuck (40%) 3.13 0.19 0.22 0.22 -93% 

EA Damper Stuck (Fully Open) 4.33 (0.15) (0.03) 0.09 -101% 
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TABLE A3.9: SUMMER FAULT ENERGY IMPACTS (DAILY COSTS) 

Fault: Summer Season 
Base 

Nominal Low Nominal High Pct 

Cooling Coil Valve Reverse Action 10.72 218.89 265.99 281.06 2382% 

Cooling Coil Valve Stuck (15%) 9.20 187.76 228.27 241.29 2380% 

Cooling Coil Valve Stuck (65%) 10.33 173.48 210.94 222.99 1942% 

Heating Coil Valve Leaking (2- 2.0GPM) 8.42 133.75 162.77 172.20 1833% 

Heating Coil Valve Leaking (2- 1.0GPM) 8.21 81.79 99.66 105.52 1114% 

Heating Coil Valve Leaking (1- 0.4GPM) 10.36 40.98 50.17 53.31 384% 

Cooling Coil Valve Stuck (Fully Closed) 11.27 (2.71) (4.25) (5.26) -138% 

RF complete failure 7.99 0.96 1.63 2.09 -80% 

OA Damper Leak (55%) 8.36 0.80 1.20 1.45 -86% 

Cooling Coil Valve Control Unstable 7.21 0.54 0.94 1.22 -87% 

EA Damper Stuck (Fully Open) 10.17 0.51 0.86 1.10 -92% 

OA Damper Stuck (Fully Closed) 9.59 0.43 0.72 0.92 -92% 

AHU Duct Leaking (after SF) 8.51 0.39 0.65 0.83 -92% 

AHU Duct Leaking (before SF) 9.17 (0.41) (0.63) (0.78) -107% 

Fault Free 9.99 0.26 0.43 0.55 -96% 

EA Damper Stuck (Fully Closed) 11.36 (0.26) (0.41) (0.52) -104% 

RF at Fixed Speed (30%) 9.44 0.08 0.41 0.68 -96% 

Fault Free 8.55 0.23 0.39 0.50 -95% 

AHU Duct Leaking (before SF) 7.69 0.18 0.22 0.23 -97% 
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Notes from Interviews: Subject 1 (Facility Manager) 

Most common faults 

1. Air filter blockage 
a. Filter blockage can cause the DX coil to freeze 
b. Filter sensors are now considered to be a good investment (pressure drop across the filter) 
c. Older buildings are typically changed by knowing the typical schedule or from a no-

heat/cooling call 
2. Belts slipping (belts last 3-4 years typically) 

a. Some units have multiple belts 
b. Vibration and long belts may cause premature wear 
c. Variable speed drives (VSD) – build a relationship between speed, amperage, and HP to 

find slippage? 
d. Newer VSDs pass a lot of data back to the BMS 
e. As belts wear, small pieces will come off and can even trigger a fire alarm 
f. Belts are cheap 

3. Damper leakage (function of quality of equipment as well) 
a. Seals 
b. Stuck bearings 
c. Broken actuator / linkage 
d. Only typically identified under extreme conditions 

4. Valve passing (function of quality of equipment) 
a. Drexel gets only high-performance valves 
b. Large valves (butterfly valves) – expects 20 years of this valve installed indoors 
c. Smaller valves (ball valves) – expects 20 years of this valve installed indoors 
d. Typically identified through performance problems 

5. Degradation in coil performance over time 
a. Korman AHU – 21,000 cfm 
b. Fins get a “skin”or corrosion on them. 

i. Can be washed with a detergent, but only to a point – then they have to be 
replaced 

c. (Delta T on the water side) versus (Delta t on the air side) 
i. Thermistor sensors ($40 per sensor) … can be bought in matched sets for an 

extra $10 - $20 (from Kele sensors) 
ii. Not likely to have chilled water in and out at the air handler – may buy extra 

sensors for this.  Could use a flowmeter, or if single pump just look at where you 
are on the pump curve. 

d. Plotting over time to see the degradation, and see how much energy is required to do the 
same job. 
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e. Chiller may be running unloaded or overloaded, (i.e. not in the most efficient range of 
operation) 

f. Aside on full-plant optimization and chiller optimization 
i. Fail more frequently than the motor bearings 

6. Fan bearings 
a. Typical length of life for fan bearings ~ 15 years 

7. Motor bearings 
a. Best way to diagnose bearing failure is vibration, but requires expensive equipment and 

expert analysis. 
i. How expensive is this type of sensor now? 

ii. Do they monitor this for chillers?  (More “critical” piece of equipment b/c more 
expensive failure to repair) 

iii. Previously often monitored by technicians who notice a difference in the noise 
the motor and fan are making 

1. Perhaps using acoustics could detect this… identify a grinding sound? 
2. Detect the slight increase in HP to overcome increased friction or too 

minor to detect? 
b. Bearing failure could cause motor shaft damage… need to send out for a re-build or get a 

replacement.  At the top of a building, this could be worthwhile 
c. Cooling towers have vibration sensors built in to them 

AHU Life Span 

d. Top quality = 50 years (replacing motors, belts, etc.) 
e. Lower quality ~ 20 years (rooftop location) 

Sensor Faults 

 Thermistor (2 wire) – reliable sensor (no need to upgrade to an RTD for the HVAC industry) 
o $25 - $30 
o 0.75 – 1 degree sensitivity 
o Tend to fail in a big way… don’t go off by a degree, they go off by 20 degrees 

 RTD sensor (3 wire) 
o $60 
o Real extra cost is to run the extra wire and power supply 
o 0.1 degree sensitivity 

 Flow switches are notoriously unreliable 
o They use a DP sensor 
o Only truly accurate flow sensor are magnetic sensors ($5,000 sensor) 
o Paddle wheel, turbine wheel sensors are “crappy” 

 DP sensor 
o Few hundred dollars 
o Generally good for 5 – 10 years 
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o Need to be maintained – small tubing gets blocked up 

 RH sensors 
o $300 
o Reliable for ~ 2 years… accuracy drifts off remarkably 
o Self-correcting to adjust for an offset error 
o Get what you pay for 

Terminal Units (VAV) 

 At low flow, the DP sensors are not accurate at all 
o May be better to reduce the size of VAV boxes to maintain higher velocity, or split one 

large box into two smaller boxes 
o Low-flow end gives headaches 
o 600 fpm gives the problem 

 Damper motor failure (stuck damper) 
o VAV controller with motor on it ($320) 

 Burns out, replace whole thing 
 Lower first cost 

o If separated, just replacing the motor is a 15 minute job ($50 plus labor) 
 4 - 10 years 
 Controllers last much longer (lots from the 1980’s still running) 

o Controller failure 
 Output relays are most common failures 
 Open relay, close relay 
 Have them programmed to update less frequently, and added deadbands to 

minimize the amount of modulation 

 Now they last multiple years instead of 1 -2 years 
False alarm rates 

 Tied to the importance of the device 
o e.g. fire-system accepts more false alarms 
o Lots of false alarms on the filters?  1 in 100 activations can be false alarms or other 

method will be used 
o Accept a higher rate of false alarms for a chiller (chance of catastrophic $100,000 repair), 

so maybe 10% 
 Keep investing money until it comes down to a lower rate 

o Wouldn’t put a technician’s time on getting the AHU false alarm rate returned 
o What do you alarm? 

 Boiler that doesn’t start when temp is cold outside 
 Power failure in a building 
 Chiller output temp exceeds 49 deg F 
 Filter alarm -> “don’t chirp at me” but let me know 
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 BMS systems have multiple levels of alarm 

 Lights up in red 

 Flashes 

 Beep/chirp 

 Continuous beeping/chirping 
 High level = can’t open the building that day 

 

Notes from Interview: Subject 2 (Building Control Engineer) 

FDD in General 

1. Sees a great need for FDD 
2. Lots of companies working on it 
3. Looking for something to start testing with his customers 

Data Acquisition 

1. Terry discussed the difficulties with mapping the data to the AFDD platform.   

 Discussed the middleware platform that will allow us to “plug’n’play” 
Discussion of how newer systems have increased sensor density, and may not require additional  

AHU System Lifespan 

 Mechanically about 20-30 years 

 Often sees older ones that have been upgraded at some point 

 Average lifespan is about 20-25 years (indoor, hydronic) 

 Rooftop is shorter than that 
Timing of problems 

1. Often the building is not commissioned well at the outset.  Increased the utility for third party 
commissioning companies. 

a. E.g. When you mount a damper actuator on the unit – mount it, tighten the bolts a few 
degrees extra “closed” to get a good seal. 

2. If it’s commissioned well, you probably won’t see stuff for a “couple years” 
Most common AHU-faults 

 Controls-side faults 
o People used to say 10 years, but they don’t really fail a lot.  TH has seen a lot of “old 

stuff out there”.  If it is going to fail, will probably fail early on and overall he doesn’t see 
a lot of electronic failure. 

 Dampers and valves are the most common problem 
o Because they are mechanical 
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1. He would put dampers first because they are “more mechanical”.   

a. They are: 
i. exposed to the elements,  

ii. get rusted up,  
iii. stop moving,  
iv. shafts slip (very common). 

b. The way we attach to a damper now is not as good as we used to do it.  Now we use a 
direct mount actuator.  Years ago, there was a box with an arm and a crank and “all that”.  
But this method had its problems too, due to the U-bolt through the shaft. 

i. If the U-bolt slips, then it will be wrong (out of calibration).  Or people will move 
the U-bolt during maintenance and inadvertently take it out of calibration.  

c. In TH’s opinion, the biggest energy waste in an AHU is either from the OA damper or 
MA damper 

 
2. In terms of failure probabilities, valves come next (second) 

a. Because they are mechanical system 
b. They get stuck/ stop working 
c. Actuation is more important than degredation 
d. Seating issues in old valves.  Tight close-off is a problem 

3. Coils are next 
a. Coils get fouled on the inside 
b. Don’t cleaned on the outside 

4. Fans are fairly simple 
a. Biggest issue with fans? Belt tension 
b. How long belts are slipping for?  Tends to solve itself, since the belts seem to wear much 

faster once they start to slip. 
c. Using, instead of a current switch. 
d. Long time ago, was a pressure swith, then current switch ($15) 
e. Now an analog current sensor ($30) 
f. That can tell you a lot.  When the belt starts to slip, you will see the current change. 
g. Bearing failure?  Don’t see it a lot.  Definitely it’s there.  Fan bearings more than motor 

bearings – take a little more abuse (because they are further apart, etc.) 
5. Schedule problems 

a. Should be picked up by the control algorithm, so not a problem 
6. He doesn’t see a lot of sensor failure.   

a. Characterized as a fairly rare occurrence 
b. Just don’t see a lot of failure on sensors.  Down the list quite a bit 
c. Any active sensors like RH, CO2 degrade over time – the worst of the active sensors is 

RH.  But RH is older, so we don’t know about CO2 yet.  So, yes, RH sensors are a 
problem. 
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d. Weather station data?  Yes, we have been doing that.  We now advise our customers to 
not put in OA, O RH sensors.   

i. One potential complication is when NOAA changes the IP address, because some 
systems can’t use just a web address. 

e. When temperature sensors fail, they fail badly. 
i. TH: It is a bad idea to field-calibrate these sensors – more harm than good. 

7. Filter statuses 
a. Used to be all DP switches, but never really worked correctly 
b. Analog pressure transmitter is now just as cheap 
c. DP depends on type of filter, RH in the air 
d. Switch was too finicky – people just adjust them out 
e. Now, best to use analog and just set a range specific to the system 
f. Is the dirty filter a problem that is already solved?   

i. Terry would agree that the filter situation is getting better. 
 

Most Common Terminal Unit Faults 

1. Main problems?  Air flow measurement is the biggest problem 
a. That’s a big problem when that sensor goes bad, wastes a lot of energy. 
b. Poor accuracy when the velocity goes down.  Oversized boxes? 
c. Need an accurate pressure transmitter as well 
d. They are using Ebtron temperature flow-rate sensors.  The cost has gone down enough 

that these aren’t bad any more. 
i. Ebtron trains their people – he can get me on the list for a three day event to learn 

about the sensor. 
ii. Ebtron provides a pre-calibrated tube that is just plug’n’play 

iii. Add in the time to install and calibrate, the ebtrons were actually a better deal.  
Sell a lot, so agreed that it is a better way of doing it. 

iv. For a VAV unit ($300) 
General Comments on AFDD 

1. PMPCA method: For retrofit applications, it could be a problem if you put something in during 
the middle of the unit’s lifespan.  The algorithm won’t pick up things that are already degraded.  
Even with re-commissioning, there is a limit to what can be sensed (e.g. interior coil fouling). 

2. Wiring vs. Wireless 
a. Designed to be wireless (for union laborers), but still not less expensive overall 
b. If you have a drop ceiling wired is always better 
c. Wireless problems: 
d. Still used for hard-to-get-to places 
e. 25 year battery life 



Energy Efficient Buildings Hub  DOE Award # EE0004261 
1 February 2012 – 31 January 2013 
Subtask 4.3 Annual Report 

 

 

 

263 

 

f. Standard wireless protocols 
g. Jump right onto wi-fi is a new option, and often preferable 

3. Front end considerations 
a. What is the operator going to want to look at 
b. Reasonable false alarm rate: 
c. Ezenics – fault has to trigger for a long time.  Wait long enough – will reduce false alarm 

rate 
d. Finds fault prioritization to be murky:  

i. Estimation of the energy-waste on a specific fault.   
1. Very difficult to estimate 

e. If you get a lot of false alarms, they are going to stop using it. 
f. Display the multi-trend for everything that relates to the fault. 
g. Trigger to the BAS 
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