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Slaven Peleš∗, Sunil Ahuja, Satish Narayanan

United Technologies Research Center

411 Silver Lane, East Hartford, CT 06108

Phone: (860) 610-7689, Email: peless@utrc.utc.com

∗Corresponding author

ABSTRACT

Whole building energy models do not always provide satisfactory predictions to facilitate decision making
during design, due to large number of uncertainties in model input parameters. In this work we present a
computationally efficient process for uncertainty quantification, sensitivity analysis and automated calibra-
tion of building models. We demonstrate our methodology using an energy simulation model of a medium
sized office building.

1. INTRODUCTION

Buildings are complex systems with large number of parameters that drive its energy and comfort perfor-
mance, such as equipment efficiencies and infiltration rates that are often not accurately measured, estimated
or recorded. Furthermore, building performance during operation is influenced by processes that are inher-
ently uncertain, such as occupancy or weather patterns, that are never well characterized or understood
during design. Thus, uncertainty quantification and management throughout the building modelling, design
and operation process is essential for reliable performance prediction and tracking. This is particularly im-
portant for energy efficient building retrofit design where energy simulation models must often be calibrated
to as-operated building state prior to evaluation of retrofit options that provide the most favorable cost-
benefit trade-off. In order to guarantee a commercially viable retrofit, the designer needs to provide reliable
confidence bounds for the retrofitted building performance in the early design stages, and not just annual
simulations for nominal conditions. However, characterizing the effects of uncertainties in nominal building
simulations is a computationally challenging exercise and is therefore ignored if not simplified.

Uncertainty quantification methods either converge slowly (e.g., Monte Carlo) or are cursed by dimen-
sionality (e.g., probabilistic collocation), and are therefore effective only when the number of uncertain
parameters is small (< 10). Building models typically have several hundred parameters, so such uncertainty
quantification methods cannot be applied directly. Fortunately, in most cases, each aspect of building energy
performance is strongly influenced by only a handful of parameters. Therefore, by conducting efficient sen-
sitivity analysis, one can identify key building parameters and conduct further analysis for those parameters
alone.

We present a methodology to automate building model calibration and uncertainty quantification in a
computationally tractable manner that would have turnaround times that are acceptable within current
design and simulation environment.

Our methodology is based on probabilistic global sensitivity analysis [1–5]. Probabilistic data required
for the sensitivity analysis is collected using commonly used building simulation packages, such as TRNSYS
or EnergyPlus. This is the most computationally expensive part of the process and requires large scale
parallel simulation runs. Based on sensitivity results, we derive a reduced order model, which is then used for
parameter calibration with respect to available calibration data (e.g., from sensor measurements). Calibrated
parameters are then fed back to the original model to improve predictive capability. The methodology also
provides output ranges and confidence bounds for the calibrated model. The reduced order model could also
be used for retrofit design optimization and optimal control design.

In Section 2 we outline our building analysis and calibration process. We describe the sampling method-
ology that was used to generate probabilistic data for sensitivity analysis in Section 3. Reduced order
model generation and sensitivity analysis is demonstrated in Section 4, and model calibration is presented
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in Section 5. Finally, we discuss mathematical methods and technical challenges involved with uncertainty
management during energy efficient building retrofit design in Section 6. We also discuss limitations of our
methodology and describe technology gaps.

2. ANALYSIS PROCESS PROTOTYPE

Since uncertainty quantification methods are either slow to converge or cursed by dimensionality, the com-
putational cost for uncertainty analysis typically grows exponentially as the size of the problem increases.
This means that simply employing more computational power may not be sufficient. For example, to perform
uncertainty quantification for 200 uncertain building parameters, taking into consideration parameter inter-
actions up to O(10) and using full collocation grid, it would take roughly 351 billion years for computation
to complete on a single processor machine. There is no physical solution in sight that can compress such
simulation to run within a reasonable amount of time. Therefore, it is necessary to develop mathematical
methods that scale better with the size of the problem.

Current state of the art methods for uncertainty quantification do not remove the curse of dimensionality
altogether. Practical improvements have been accomplished recently by increasing number of uncertain
parameters that can be studied simultaneously to several hundreds from less than ten. Particularly effective
are methods for detecting uncertain parameters to which system is not sensitive. These methods scale
linearly and can help reduce the size of the problem significantly. There are other techniques, such as quasi-
random number generation, which improve convergence of Monte Carlo methods [6], as well as sparse grid
methods [7], which can significantly reduce amount of probabilistic samples needed to cover given volume in
parameter space. To be effective, uncertainty analysis must be carefully tailored to the system being studied.
Therefore, there is a need to develop not only new uncertainty analysis methods, but also to develop processes
that utilize those methods in the most efficient way.

Commonly used buildings simulation packages rely heavily on legacy code and embedding numerical
solvers within such packages is very difficult, often impossible. Fortunately, efficient uncertainty analysis can
be carried out entirely with black-box methods. These methods use repeated simulations of a deterministic
model to produce statistical data needed for uncertainty quantification. Each deterministic simulation is
performed with input parameters perturbed to reflect uncertainty associated with them. General black-box
uncertainty analysis process has three key steps: (i) generating probabilistic parameter samples, (ii) running
simulations for each sample and (iii) performing analysis on simulation data.

Parameter perturbations are performed according to probabilistic rules. For example, parameters can be
selected randomly from input probability density function. Each deterministic simulation is run for different
sample of input parameters. Running deterministic simulations is the most time consuming part of the
process, which typically takes days, whereas the rest of the process takes only minutes to execute. Output
data from simulations is then analysed in order to assess and quantify effects of input uncertainty. Analysis
can be as simple as calculating average value of all simulation trials, or it can be an elaborate multi-stage
process [8].

The guiding principle for the proposed uncertainty analysis process is to reuse much of existing tools and
resources to make it easy to adopt by building design practitioners. We designed our uncertainty analysis code
as a wrapper around a standard buildings simulator so that same models can be used for both, deterministic
simulations as well as uncertainty analysis. The analysis itself does not depend on the specific simulator.
The prototype code described here has been designed to work with TRNSYS, but with a suitable plug-in,
the code can be interfaced to any building simulator.

FIG. 1: Model of DOE medium-size office benchmark building.
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We demonstrate analysis using a TRNSYS whole building energy simulation model of DOE medium-sized
office benchmark building [9], shown in Figure 1. This is a three storey building with total inside area of
15,000 ft2, divided into 15 heating/cooling zones.

3. GENERATING PROBABILISTIC SAMPLES FOR UNCERTAINTY ANALYSIS

3.1 Sampling Techniques
In order to perform analysis, sufficient amount of probabilistic data must be produced by running repeated

deterministic simulations. Each deterministic simulation is run with uncertain parameters perturbed accord-
ing to a mathematical prescription. In the simplest case, we choose parameters by sampling them randomly
from probabilistic density functions for each uncertain input (Monte Carlo method). The sampling range
and the type of the probabilistic density functions must be set by the modeller/designer. The uncertain
input properties are not always known. Equipment or material manufacturers may have to conduct exten-
sive material testing and compile deviations from nominal values into a probability density function. More
often, however, no reliable information is available, so the modeller must conduct testing on his/her own or
estimate uncertain input properties based on prior experience.

Random sample xi = (xi1, . . . , x
i
d) is computed under assumption that all uncertain inputs are uncorrelated,

so uncertain parameter values xij are calculated independently as

xij = x̄j + εjρ
−1
j (ξij) (1)

where x̄j is nominal value of the uncertain parameter, εj is relative tolerance, ρj is cumulative probability
density function describing type of the uncertainty, and 0 < ξj < 1 is a random number. In our analysis
we use Monte Carlo and quasi Monte Carlo methods. The two differ in the way random numbers ξij are
generated. The former uses plain random number generator, while the latter uses quasi random number
sequences, which ensure more uniform sampling space coverage. We refer to xi = (xi1, . . . , x

i
d) as a physical

sample, and to ξi = (ξi1, . . . , ξ
i
d) as mathematical sample. Convergence of Monte Carlo methods is slow

and numerical error scales as 1/
√
N , where N is the number of random samples. The numerical error of

quasi Monte Carlo method is theoretically evaluated to be of order (logN)d/N , where N is the number
of samples [6]. In some cases it is observed that the error diminishes even faster, at 1/N rate. Quasi
Monte Carlo implementations we used are Joe-Kuo variant of Sobol sequence [10] and Halton sequence with
Kocis-Whiten scrambling [11].

3.2 Input Data
Model developer needs to supply following data for each uncertain parameter in the building model: (i)

nominal value, (ii) tolerance, (iii) type of uncertainty and (iv) polynomial expansion order. The nominal
values for all parameters are already included in the model. In our approach we enter additional information
required for uncertainty analysis through TRNSYS graphical user interface, as well.

TRNSYS mark-up uses the exclamation mark symbol to denote a comment in the input file. Everything
entered after this symbol is ignored by the simulation engine. The graphical user interface allows user to
enter comments next to variables as shown in Figure 2. To take advantage of this feature, we defined tag
“!UNC” to denote uncertain input data entry. For each uncertain input user adds a comment that begins
with this tag and is followed by value for the tolerance, uncertainty type tag and polynomial expansion order
separated by blank spaces.

Tolerance is entered as a relative tolerance, a number in interval (0, 1). The absolute tolerance is calculated
by multiplying this number to the nominal value of the uncertain parameter. If the nominal value is zero,
then the tolerance is interpreted as the absolute tolerance expressed in the same units as the nominal value.
Type of uncertainty is entered as a string, e.g. “UNIFORM” for uniformly distributed input, “NORMAL”
for Gauss distributed input, etc. Polynomial expansion order is entered as a positive integer and is used to
specify polynomial order for response surface fitting.

Our code can extract all of this information from TRNSYS input file and use it for the analysis. Once
samples are computed, the code generates TRNSYS input files for each sample, where nominal parameter
values are replaced with sampled values. TRNSYS simulations are then scheduled for each input sample,
and information necessary for the analysis is extracted from TRNSYS output files once simulations are
completed.
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FIG. 2: TRNSYS graphic user interface is used to enter uncertain inputs data. The data is stored as a comment in
the TRNSYS input file.

4. SENSITIVITY ANALYSIS

Typical building model has hundreds of uncertain parameters and because of that sensitivity analysis
methods that can handle high dimensional problems are at the core of the building performance analysis.
Variance-based methods are particularly important since even when they fail to capture all sensitivities in
the system, they can provide a quantitative measure of the amount of sensitivity in the system that has not
been accounted for.

For sensitivity analysis we first account for sensitivities due to single parameter perturbations. Such
computation scales linearly with the number of uncertain parameters, and large problems can be handled
with more computational power. From there we find first order sensitivity indices and amount of sensitivity
not captured by first order analysis. If unaccounted sensitivity is a small fraction of the overall sensitivity,
then all necessary information for further analysis is contained within sampling data. Otherwise, higher order
sensitivity analysis needs to be done, preferably after some model reduction based on first order analysis
results.

A building model f(x), with uncertain parameters x = (x1, . . . , xd), 0 6 xi 6 1, can be expanded in
terms of analysis of variance (ANOVA) decomposition as

f(x) = f0 +

d∑
i=0

fi(xi) +

d∑
i=0

∑
j<i

fij(xi, xj) + . . .+ f1,2,...,d(x1, x2, . . . , xd) (2)

where ∫ 1

0

fi1i2...is(xi1, xi2, . . . , xis)dxik = 0, ∀k : 1 6 k 6 s (3)

Here we assume without loss of generality that all uncertain parameters xi ∈ (0, 1). From the definition (2)
it follows that f0 is the mean value of f(x). Variance expansion is then given as

D =
∑
i

Di +
∑
i

∑
j<i

Dij + . . .+D1,2,...,d (4)

where

Di1i2...is =

∫ 1

0

f2i1i2...is(xi1, xi2, . . . , xis)dxi1 . . . dxis (5)

is a partial variance and

D =

∫ 1

0

(f(x)− f0)2dx (6)
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is the total variance. Sobol sensitivity index is defined as a fraction of partial and total variance

Si1i2...is =
Di1i2...is

D
. (7)

By definition all Sobol indices sum up to one.∑
i

Si +
∑
i

∑
j<i

Sij + . . .+ S1,2,...,d = 1 (8)

First order Sobol index is defined as

Si =
Di

D
(9)

When Si ≈ 1 the system is sensitive only to xi. Sum of all first order indices gives the fraction of uncertainty
due to single parameter perturbations. The value of this sum helps determine if higher order sensitivity
analysis is necessary to assess overall system sensitivity. Another useful quantity is first order total Sobol
index, which is defined as

Ti =
Di +

∑
j Dij +

∑
j

∑
k<j Dijk + . . .+D1,2,...,d

D
(10)

When Ti ≈ 0 the system is not sensitive to xi. Total Sobol index is typically used to eliminate parameters
that the system is not sensitive to from further analysis. Finally, derivative based first order sensitivity index
is defined as

vi =

∫ 1

0

(
∂f

∂xi

)2

dx (11)

Relationship between the three types of first order sensitivity indices is:

0 6 Si 6 Ti 6 vi 6 1 (12)

Derivative based sensitivity index is the upper bound of the total Sobol index, but in practice it is much
cheaper to evaluate, and is used instead of the total Sobol index to eliminate low sensitivity parameters.

Mean value f0 and total variance D are computed directly from the simulation data. Partial variances
could be calculated from separate sets of simulation data where only a subset of uncertain parameters is
perturbed. However, computationally more efficient way to compute partial variances is response surface
method where the data for the mean and total variance calculation can be reused. Let us assume that model
f(x) can be expanded in terms of orthonormal polynomials φk and consider response surface in the form

fj(xj) =

∞∑
k=0

ajkφk(xj), (13)

where ∫ 1

0

φi(x)φj(x)ρ(x)dx = δij . (14)

For simplicity and without loss of generality we will assume that ρ(x) = 1. Partial variance then can be
expressed in terms of polynomial expansion coefficients as

Dj =

∞∑
k=1

(ajk)2, (15)

and therefore Sobol first order index can be computed as

Sj =
1

D

∞∑
k=1

(ajk)2. (16)
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If polynomial expansion converges, we can make a cut-off at suitable order P and approximate Sobol index
as

Ŝi =
1

D

P∑
k=1

a2k. (17)

Obviously, only a finite approximation at relatively small order is useful for practical applications. Response
surface for the entire system is

f(x) ≈ f0 +

d∑
j=1

P∑
k=1

ajkφk(xj) (18)

Polynomial coefficients can be calculated from simulation data using for example least square fit. The
number of polynomial coefficients to find, and therefore computational cost, grows linearly with the
dimension of the system d.

4.1 Sensitivity Analysis Example
Here we demonstrate sensitivity analysis for 217 uncertain parameters with respect to 16 outputs in DOE

benchmark building model. The outputs are annual energy consumptions for different end uses in the
building. A total of 4,500 quasi Monte Carlo simulations was run, using TRNSYS as the simulation engine.
First order sensitivity analysis (Figure 3) shows that there are few parameters that the system is sensitive
to; there are only 19 parameters that contribute to 10% or more of overall sensitivity for at least one output.

For example, annual natural gas consumption sensitivity is almost entirely dominated by the parameter
representing the efficiency of the boiler (67%) followed by the hot water temperature (8%). All other
parameters combined contribute to less than 25% of the gas consumption sensitivity. The sum of all first
order Sobol indices for gas consumption is 99.5%, suggesting that higher order sensitivities are negligible and
no further sensitivity analysis is needed. From this one can further deduce that model for gas consumption
can be reasonably well calibrated by adjusting only two uncertain parameters.

FIG. 3: First order Sobol indices for 217 uncertain input parameters calculated for 16 system outputs. Color code
denotes value of the Sobol index with dark blue indicating small and red large value of the index. Results for
equipment parameters and building envelope parameters are shown on separate panels. Parameter and output labels
cannot be shown on this scale.

In order to assess accuracy and reliability of results, computations of sum of first order Sobol indices
∑

i Si

and relative error of the least square fit

ε =
‖Ax−B‖
‖B‖

(19)

were included in the sensitivity analysis. These two quantitative measures help determine whether the
analysis was successful and help decide if and what additional analysis needs to be performed. Figure 4
shows these measures evaluated for all system outputs.
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Large error in response surface fit may indicate that there were too few probabilistic samples to get an
accurate fit or that the form of the response surface is not suitable for the problem at hand. The latter
means that either some important uncertain parameters were omitted from the analysis or that higher order
sensitivities (those due to combined effects of several parameter perturbations) contribute significantly to
the overall sensitivity.

If the sum of first order Sobol indices is significantly smaller than one, that suggests higher order sensitiv-
ities need to be investigated, and possibly some important parameters were not included in the analysis. If
the sum is very close to zero, then it is quite certain that analysis needs to be expanded to cover additional
parameters. It is highly unlikely that sensitivity is contained in higher orders, and at the same time single
parameter perturbation do not affect the system significantly.

FIG. 4: Quality of sensitivity analysis is checked by evaluating response surface fit error and sum of all Sobol indices.

In the example given in Figure 4 it is shown that sensitivity analysis was successful for all but three
outputs, since in those cases response surface error was small. Furthermore, first order Sobol indices sum up
almost exactly to one, suggesting that no further analysis is required. The three outputs where sensitivity
analysis failed are energy consumptions of lighting, plug loads and the elevator. The sum of first order
sensitivity indices for each of those is zero, suggesting that parameters that affect these three outputs were
not included in the analysis. Upon closer look one can verify that this is indeed the case. Energy consumption
in these cases depends almost exclusively on usage schedules (e.g. how long during the day the lights are
on) rather than on any static parameters. Currently our code supports only static parameter sensitivity
analysis, so lighting, plug load and elevator schedules were not included in the analysis. This is what the two
quality measures indicated. Time varying uncertainty and sensitivity analysis will be addressed in another
publication.

5. MODEL CALIBRATION

The sensitivity analysis and response surface (reduced-order model) of the original function f(x) can then
be used to calibrate the full-order model; that is, given a set of field or experimental measurements, the
analysis could be used to compute the parameters that maximize the agreement of the model with the data.
The response surface of the function f(x) was described as

y = f̃(x) = f0 +

d∑
j=1

P∑
k=1

ajkφk(xj) ≈ f(x). (20)

In general, the original function can be a vector f(x) =
(
f1(x), f2(x), . . . , fN (x)

)
, in which case the response

function is

yn = f̃n(x) = f0n +

d∑
j=1

P∑
k=1

anjkφ
n
k (xj) ≈ fn(x), n = 1, 2, . . . , N. (21)

The calibration procedure is described as follows: The significant parameters indicated by large Sobol
indices are retained in the response function (21), while the rest are omitted. Using the measurement
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data of the outputs yn, which typically represent physical quantities such as monthly/annual electricity/gas
consumption, we formulate an optimization problem to estimate parameters that minimize the difference
between the model predictions and available data. The steps involved in the calibration process are now
described in detail.

As a first step, for each output, order the parameters in the decreasing order of their Sobol indices.
Compute their cumulative Sobol indices, and retain the parameters x̃ with a cumulative index smaller than
a cut-off, say 0.95. Alternatively, retain all parameters with corresponding Sobol indices greater than a
certain user-defined cut-off, say 0.05. Redefine the response surface (21) by retaining only terms containing
the reduced set of parameters.

Then, given measurements ci, the calibration problem can be formulated as:

min
x̃
J [x̃] =

N∑
i=1

αi(yi(x̃)− ci)2, (22)

0 < x̃i < 1, i = 1, 2, . . . , d. (23)

The constants αi are used to normalize the outputs with respect to certain nominal values; here, these are
chosen to be the values of the function at the center of the domain [0, 1]d. The optimization problem (23)
can be solved using standard off-the-shelf solvers such as IPOPT [12] or NLOpt [13]. In this work, we just
present a demonstration of the capability that is to be built into the tool-chain in the future. For that
purpose, we use standard algorithms built into MATLABr; in particular, we use the function fmincon, with
an interior-point algorithm to solve (23).

Finally, to test the calibration, we compare the predictions of the calibrated model to the measurement
data. That is, if the solution of the optimization problem (23) is x̄, compute the error e = ‖f(x̄)− c‖/‖c‖.

5.1 Calibration Example
Here, we describe the process involved in model calibration, using the response surface and results of

sensitivity analysis described in section 4. The process itself was outlined for an arbitrary model in section 5,
and here we describe its application to a TRNSYS model of the DOE benchmark building.

Recall, from section 4, that the response surface f̃(x) of the model f(x) is a polynomial function of all
the original 217 parameters. The Sobol indices, which are an indicator of the importance of the parameters
to the measured outputs, can be used to reduce the number of parameters defining the response surface.
Here, we retain only the parameters with Sobol indices Si > 0.05 for any of the given outputs, which sharply
reduces the number of parameters from 217 to 29. Next, define the response surface in terms of the reduced
number of parameters, f̃(x̃). Given the measurements of the 16 outputs ci, we then define a cost function
similar to that in (23). The resulting optimization problem is solved using Matlab function fmincon and
results in parameters that calibrate the model.

In this case, since field or experimental data was not available, we compute this as follows. For the
sensitivity and uncertainty analysis using the sampling method, we evaluated the TRNSYS model at multiple
samples (4500 in number), and the resulting outputs define a distribution, with a mean µi and variance σ2

i

that can be numerically computed. The distribution of total gas consumption, along with the mean and one
standard deviation are shown in Figure 5. We assume that the calibration data are defined as ci = µi +βσi,
where β = 1.5 is an arbitrarily chosen parameter. We considered a wide range of values of β for calibration
and report a representative one. However, note that the calibration data should be within the spread of the
output distribution for meaningful results; for data outside of this range, the response surface is no longer
accurate.

The calibration parameters are finally substituted in the full TRNSYS model and the error in predicting all
the outputs is computed. A comparison of the error, both before and after calibration, is shown in Figure 6.
The calibration data, along with the model predictions (before and after calibration) are shown in Figure 7.

6. CONCLUSIONS AND FUTURE CHALLENGES

We demonstrated a systematic and scalable approach for sensitivity analysis with building energy sim-
ulation models. The reduced order model (or meta-model) obtained as part of the process is re-used for
automated calibration of the high fidelity building energy model from which it was derived. The advantage
of meta-model is that it returns function evaluation in a fraction of a second as opposed to the high fidelity
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FIG. 5: Histogram of total gas consumption, obtained from the 4500 samples used for sensitivity analysis. Also
shown are the calibration data (green, square), the nominal output (red, circle), and the mean and single standard
deviations (blue, diamond)

FIG. 6: DOE medium size benchmark building model calibration: error in predicting various outputs, before (blue)
and after (green) calibration.

model, which takes several minutes to simulate. Furthermore, the meta-model is obtained in a simple ana-
lytical form, so it can be easily manipulated and used in various optimization algorithms. We demonstrated
the successful calibration of the DOE benchmark building model (with higher fidelity simualtion-generated
data), where we reduced model prediction errors that ranged from 10-40% to less than 5% each.

Our analysis was limited to uncertainties with respect to static design parameters. Building performance
is also significantly affected by uncertain processes such as weather or occupancy. These must be included
to complete the building performance analysis. However, methods to quantify time varying uncertainties is

FIG. 7: DOE medium size benchmark building model calibration. The figure compares the model predictions of five
different quantities, before (blue) and after (green) calibration, with the assumed measurements (red).
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not as mature as methods for parametric uncertainty, and this is an active research area.
Our approach provides a reliable and fully automated way to assess first order parametric sensitivities in

building models. Higher order sensitivities are computationally more costly to evaluate. For example, to
perform second order sensitivity analysis for the same set of parameters we would need order of 107 numerical
samples instead of 4500 we needed for the first order analysis. Therefore, to perform a higher order analysis
with the same computational capability, the dimensionality of the problem needs to be reduced. There is
still no automated way to do this. Nevertheless, first order analysis results and domain knowledge expertise
may provide sufficient information to eliminate insignificant uncertain inputs and perform efficient higher
order analysis on a subset of sensitive parameters. In the benchmark building example, first order analysis
was sufficient for almost all of the analysis. We anticipate that for more elaborate building design problems,
especially in cases with deep energy efficient retrofits, a systematic method for dimensionality reduction and
system decomposition is needed.
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